A333328 Irregular triangle read by rows: T(n,0) = A002182(n) and T(n,k + 1) = A000005(T(n,k)), terminating at the first number which is not highly composite, n > 2.
4, 3, 6, 4, 3, 12, 6, 4, 3, 24, 8, 36, 9, 48, 10, 60, 12, 6, 4, 3, 120, 16, 180, 18, 240, 20, 360, 24, 8, 720, 30, 840, 32, 1260, 36, 9, 1680, 40, 2520, 48, 10, 5040, 60, 12, 6, 4, 3, 7560, 64, 10080, 72, 15120, 80, 20160, 84, 25200, 90, 27720, 96, 45360, 100
Offset: 3
Examples
The irregular triangle T(n,k) starts: n\k 0 1 2 3 4 ... 3: 4 3 4: 6 4 3 5: 12 6 4 3 6: 24 8 7: 36 9 8: 48 10 9: 60 12 6 4 3 10: 120 16 11: 180 18 12: 240 20 13: 360 24 8 ...
Links
- James Grime and Brady Haran, 5040 and other Anti-Prime Numbers, Numberphile video (2016).
Programs
-
PARI
A333328_rows(n)={my(N=Map(Mat([1,1;2,2;m=4,3])),p=2,F=[]); while(#N
p,mapput(N,m,p=numdiv(m)); my(M=List([m,q=p])); while(mapisdefined(N,q,&q),listput(M,q));print(#N", "Vec(M)); F=concat(F,Vec(M))); my(s=if(m>=720720,360360,m>=5040,2520,m>=840,420,m>=60,60,2)); until(numdiv(m+=s)>p,));F}
Comments