cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333364 Indices of primes p whose order of primeness A078442(p) is prime.

Original entry on oeis.org

2, 3, 7, 11, 13, 17, 19, 23, 29, 37, 41, 43, 47, 53, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283
Offset: 1

Views

Author

Alois P. Heinz, Mar 16 2020

Keywords

Comments

All terms are prime.

Examples

			11 is a term: prime(11) = 31 -> 11 -> 5 -> 3 -> 2 -> 1, five (a prime number of) steps "->" = pi = A000720.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember;
          `if`(isprime(n), 1+b(numtheory[pi](n)), 0)
        end:
    a:= proc(n) option remember; local p;
          p:= `if`(n=1, 1, a(n-1));
          do p:= nextprime(p);
             if isprime(b(p)+1) then break fi
          od; p
        end:
    seq(a(n), n=1..62);
  • Mathematica
    b[n_] := b[n] = If[PrimeQ[n], 1 + b[PrimePi[n]], 0];
    a[n_] := a[n] = Module[{p}, p = If[n == 1, 1, a[n - 1]];
       While[True, p = NextPrime[p]; If[PrimeQ[b[p] + 1], Break[]]]; p];
    Table[a[n], {n, 1, 62}] (* Jean-François Alcover, Sep 14 2022, after Alois P. Heinz *)

Formula

{ p in primes : A049076(p) is prime }.
a(n) = pi(A333353(n)), with pi = A000720.