A333364 Indices of primes p whose order of primeness A078442(p) is prime.
2, 3, 7, 11, 13, 17, 19, 23, 29, 37, 41, 43, 47, 53, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283
Offset: 1
Keywords
Examples
11 is a term: prime(11) = 31 -> 11 -> 5 -> 3 -> 2 -> 1, five (a prime number of) steps "->" = pi = A000720.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- N. Fernandez, An order of primeness, F(p)
- N. Fernandez, An order of primeness [cached copy, included with permission of the author]
Programs
-
Maple
b:= proc(n) option remember; `if`(isprime(n), 1+b(numtheory[pi](n)), 0) end: a:= proc(n) option remember; local p; p:= `if`(n=1, 1, a(n-1)); do p:= nextprime(p); if isprime(b(p)+1) then break fi od; p end: seq(a(n), n=1..62);
-
Mathematica
b[n_] := b[n] = If[PrimeQ[n], 1 + b[PrimePi[n]], 0]; a[n_] := a[n] = Module[{p}, p = If[n == 1, 1, a[n - 1]]; While[True, p = NextPrime[p]; If[PrimeQ[b[p] + 1], Break[]]]; p]; Table[a[n], {n, 1, 62}] (* Jean-François Alcover, Sep 14 2022, after Alois P. Heinz *)
Comments