A333396 Total length of all longest runs of 0's in multus bitstrings of length n.
1, 2, 5, 11, 23, 45, 87, 165, 309, 573, 1056, 1934, 3527, 6408, 11605, 20960, 37771, 67928, 121949, 218595, 391302, 699610, 1249475, 2229329, 3974083, 7078658, 12599318, 22410548, 39837420, 70775727, 125675525, 223052519, 395702395, 701695820, 1243827018, 2204007329
Offset: 1
Keywords
Examples
a(4) = 11 because the seven multus bitstrings of length 4 are 0000, 1100, 0110, 0011, 1110, 0111, 1111 and the longest 0-runs contribute 4+2+1+2+1+1+0 = 11.
Links
- Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
Formula
G.f.: x*Sum_{k>=1} (1+x^2)/(1-2*x+x^2-x^3)-(1+x^2-x^(k-1)+x^k-2*x^(k+1))/(1-2*x+x^2-x^3+x^(k+2)).
Comments