cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A221160 G.f.: Sum_{n>=0} (4*n+1)^n * x^n / (1 + (4*n+1)*x)^n.

Original entry on oeis.org

1, 5, 56, 864, 16896, 399360, 11059200, 350945280, 12551454720, 499415777280, 21879167385600, 1046394961920000, 54245114825932800, 3029690116944691200, 181363518724689100800, 11583863454028529664000, 786298610212845649920000, 56523637237014847291392000
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2013

Keywords

Examples

			G.f.: A(x) = 1 + 5*x + 39*x^2 + 432*x^3 + 6156*x^4 + 106920*x^5 +...
where
A(x) = 1 + 5*x/(1+5*x) + 9^2*x^2/(1+9*x)^2 + 13^3*x^3/(1+13*x)^3 + 17^4*x^4/(1+17*x)^4 + 21^5*x^5/(1+21*x)^5 +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (2*n + 3)*4^(n - 1)*n!; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Dec 23 2022 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,((4*m+1)*x)^m/(1+(4*m+1)*x +x*O(x^n))^m), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = (2*n+3) * 4^(n-1) * n! for n>0 with a(0)=1.
E.g.f.: (1 - 3*x + 4*x^2) / (1-4*x)^2.
From Amiram Eldar, Dec 23 2022: (Start)
Sum_{n>=0} 1/a(n) = 8*exp(1/4) - 1/3 - 8*sqrt(Pi)*erfi(1/2), where erfi is the imaginary error function.
Sum_{n>=0} (-1)^n/a(n) = 8*sqrt(Pi)*erf(1/2) - 8/exp(1/4) - 1/3, where erf is the error function. (End)

A221161 G.f.: Sum_{n>=0} (4*n+3)^n * x^n / (1 + (4*n+3)*x)^n.

Original entry on oeis.org

1, 7, 72, 1056, 19968, 460800, 12533760, 392232960, 13872660480, 546979184640, 23781703680000, 1130106558873600, 58263271479705600, 3238634262940876800, 193064390900475494400, 12285915784575713280000, 831229959367865401344000, 59578968979556190388224000
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2013

Keywords

Examples

			G.f.: A(x) = 1 + 7*x + 72*x^2 + 1056*x^3 + 19968*x^4 + 460800*x^5 +...
where
A(x) = 1 + 7*x/(1+7*x) + 11^2*x^2/(1+11*x)^2 + 15^3*x^3/(1+15*x)^3 + 19^4*x^4/(1+19*x)^4 + 23^5*x^5/(1+23*x)^5 +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (2*n + 5)*4^(n - 1)*n!; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Dec 23 2022 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,((4*m+3)*x)^m/(1+(4*m+3)*x +x*O(x^n))^m), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = (2*n+5) * 4^(n-1) * n! for n>0 with a(0)=1.
E.g.f.: (1 - x - 4*x^2) / (1-4*x)^2.
From Amiram Eldar, Dec 23 2022: (Start)
Sum_{n>=0} 1/a(n) = 48*sqrt(Pi)*erfi(1/2) - 40*exp(1/4) + 1/5, where erfi is the imaginary error function.
Sum_{n>=0} (-1)^n/a(n) = 48*sqrt(Pi)*erf(1/2) - 56/exp(1/4) + 1/5, where erf is the error function. (End)

A113550 a(n) = product of n successive numbers up to n, if n is odd a(n) = n*(n-1)*.. = n!, if n is even a(n) = n(n+1)(n+2)... 'n' terms.

Original entry on oeis.org

1, 6, 6, 840, 120, 332640, 5040, 259459200, 362880, 335221286400, 39916800, 647647525324800, 6227020800, 1748648318376960000, 1307674368000, 6288139352883548160000, 355687428096000, 29051203810321992499200000, 121645100408832000, 167683548393178540705382400000
Offset: 1

Views

Author

Amarnath Murthy, Nov 03 2005

Keywords

Examples

			a(3) = 3*2*1 = 6.
a(4) = 4*5*6*7 = 840.
		

Crossrefs

Programs

  • Mathematica
    n = 1; anfunc[n_] := (If [EvenQ[n], {an = n, Do[an = an*(n + i), {i, n - 1}]}, an = n! ]; an); Table[anfunc[n], {n, 1, 20}] (* Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Mar 10 2006 *)

Formula

a(2n-1) = (2n-1)!, a(2n) = (4n-1)!/(2n-1)!.
a(2n-1)*a(2n) = (4n-1)!.
Sum_{n>=1} 1/a(n) = sinh(1) + (sqrt(Pi)/2) * (exp(1/4) * erf(1/2) - exp(-1/4) * erfi(1/2)). - Amiram Eldar, Aug 15 2025

Extensions

More terms from Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Mar 10 2006
Showing 1-3 of 3 results.