cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A333449 a(n) = Sum_{k=1..n} prime(floor(n/k)).

Original entry on oeis.org

2, 5, 9, 14, 20, 27, 33, 40, 48, 61, 65, 80, 86, 95, 107, 120, 128, 141, 149, 168, 178, 189, 195, 218, 232, 243, 253, 268, 272, 297, 313, 330, 342, 353, 373, 396, 404, 419, 431, 458, 466, 483, 495, 510, 530, 539, 553, 594, 604, 627, 641, 660, 664, 689, 703, 726, 742, 749, 757, 798
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 21 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Prime[Floor[n/k]], {k, 1, n}], {n, 1, 60}]
    g[1] = 2; g[n_] := Prime[n] - Prime[n - 1]; a[n_] := Sum[Sum[g[d], {d, Divisors[k]}], {k, 1, n}]; Table[a[n], {n, 1, 60}]
  • PARI
    a(n) = sum(k=1, n, prime(n\k)); \\ Michel Marcus, Mar 22 2020

Formula

G.f.: (1/(1 - x)) * (2*x/(1 - x) + Sum_{k>=2} (prime(k) - prime(k-1))*x^k/(1 - x^k)).
Sum_{k=1..n} mu(k) * a(floor(n/k)) = prime(n).

A333471 a(n) = 2 * mu(n) + Sum_{d|n, d > 1} mu(n/d) * (prime(d) - prime(d-1)).

Original entry on oeis.org

2, -1, 0, 1, 2, 1, 2, 0, 2, 3, 0, 3, 2, -1, 0, 4, 4, -2, 4, -3, -2, 5, 2, 0, 4, 1, -2, 1, 0, -3, 12, -2, 4, -3, 4, -4, 4, 1, 0, 2, 4, 1, 8, -5, -2, -1, 10, 2, 0, -8, -2, 1, 0, 10, 2, 2, 0, 1, 4, -1, 0, -3, 10, 0, -4, -7, 12, 3, 6, -9, 2, 4, 6, 1, -2, -3, 2, 3, 2, -2
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 23 2020

Keywords

Comments

Moebius transform of A054541 (2 followed by prime gaps).

Crossrefs

Programs

  • Mathematica
    a[n_] := 2 MoebiusMu[n] + Sum[If[d > 1, MoebiusMu[n/d] (Prime[d] - Prime[d - 1]), 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 80}]

Formula

a(n) = Sum_{d|n} mu(n/d) * A054541(d).
Sum_{k=1..n} floor(n/k) * a(k) = prime(n).
Showing 1-2 of 2 results.