A333498
Sum of the heights of all Motzkin paths of length n.
Original entry on oeis.org
0, 0, 1, 3, 9, 25, 70, 196, 552, 1560, 4423, 12573, 35826, 102310, 292786, 839554, 2411945, 6941593, 20011328, 57779038, 167069317, 483739961, 1402413161, 4070537585, 11827842021, 34403798725, 100167396088, 291903951462, 851380987390, 2485175809878
Offset: 0
-
b:= proc(x, y, h) option remember; `if`(x=0, h, add(
b(x-1, y+j, max(h, y)), j=-min(1, y)..min(1, x-y-1)))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..35);
-
b[x_, y_, h_] := b[x, y, h] = If[x == 0, h, Sum[b[x - 1, y + j, Max[h, y]], {j, -Min[1, y], Min[1, x - y - 1]}]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 35] (* Jean-François Alcover, May 10 2020, after Maple *)
A333069
Number of lattice paths from (0,0) to (n,0) that do not go below the x-axis, and at (x,y) only allow steps (1,v) with v in {-1,0,1,...,y+1}.
Original entry on oeis.org
1, 1, 2, 4, 9, 22, 57, 155, 439, 1287, 3886, 12035, 38100, 122943, 403410, 1343321, 4531710, 15465414, 53325680, 185575269, 651191826, 2302247822, 8194892393, 29350405663, 105713021575, 382717065800, 1392121894189, 5085836001166, 18654616951435, 68678029247822
Offset: 0
-
b:= proc(x, y) option remember; `if`(x=0, 1, add(
`if`(x+j>y, b(x-1, y-j), 0), j=-1-y..min(1, y)))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..33);
-
b[x_, y_] := b[x, y] = If[x == 0, 1, Sum[If[x + j > y, b[x - 1, y - j], 0], {j, -1 - y, Min[1, y]}]];
a[n_] := b[n, 0];
a /@ Range[0, 33] (* Jean-François Alcover, Dec 19 2020, after Alois P. Heinz *)
A333608
Sum of the heights of all nonnegative lattice paths from (0,0) to (n,0) where the allowed steps at (x,y) are (1,v) with v in {-1,0,...,max(y,1)}.
Original entry on oeis.org
0, 0, 1, 3, 9, 25, 70, 200, 584, 1742, 5304, 16471, 52120, 167885, 549856, 1828897, 6170108, 21087458, 72923515, 254880303, 899454849, 3201729220, 11486266036, 41497996004, 150879471934, 551723923040, 2027990653855, 7489507917594, 27777837416779, 103427750936183
Offset: 0
-
b:= proc(x, y, h) option remember;
`if`(x=0, h, add(b(x-1, y+j, max(y, h)),
j=-min(1, y)..min(max(1, y), x-y-1)))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..29);
-
b[x_, y_, h_] := b[x, y, h] = If[x == 0, h, Sum[b[x - 1, y + j, Max[y, h]], {j, -Min[1, y], Min[Max[1, y], x - y - 1]}]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 29] (* Jean-François Alcover, May 12 2020, after Maple *)
A333070
Total number of nodes summed over all lattice paths from (0,0) to (n,0) that do not go below the x-axis, and at (x,y) only allow steps (1,v) with v in {-1,0,1,...,y+1}.
Original entry on oeis.org
1, 2, 6, 16, 45, 132, 399, 1240, 3951, 12870, 42746, 144420, 495300, 1721202, 6051150, 21493136, 77039070, 278377452, 1013187920, 3711505380, 13675028346, 50649452084, 188482525039, 704409735912, 2642825539375, 9950643710800, 37587291143103, 142403408032648
Offset: 0
-
b:= proc(x, y) option remember; `if`(x=0, 1, add(
`if`(x+j>y, b(x-1, y-j), 0), j=-1-y..min(1, y)))
end:
a:= n-> (n+1)*b(n, 0):
seq(a(n), n=0..30);
-
b[x_, y_] := b[x, y] = If[x == 0, 1, Sum[
If[x + j > y, b[x - 1, y - j], 0], {j, -1 - y, Min[1, y]}]];
a[n_] := (n+1) b[n, 0];
a /@ Range[0, 30] (* Jean-François Alcover, Apr 05 2021, after Alois P. Heinz *)
A333071
Total area under all lattice paths from (0,0) to (n,0) that do not go below the x-axis, and at (x,y) only allow steps (1,v) with v in {-1,0,1,...,y+1}.
Original entry on oeis.org
0, 0, 1, 4, 16, 63, 239, 895, 3343, 12503, 46905, 176620, 667664, 2533699, 9650737, 36887383, 141448958, 544022417, 2098082719, 8111788699, 31434420426, 122068414186, 474932563378, 1851059631879, 7226108097869, 28250493771358, 110594307388370, 433488248791630
Offset: 0
-
b:= proc(x, y) option remember; `if`(x=0, [1, 0],
add(`if`(x+j>y, (p-> p+[0, p[1]*(y-j/2)])(
b(x-1, y-j)), 0), j=-1-y..min(1, y)))
end:
a:= n-> b(n, 0)[2]:
seq(a(n), n=0..30);
-
b[x_, y_] := b[x, y] = If[x == 0, {1, 0},
Sum[If[x + j > y, With[{p = b[x - 1, y - j]}, p +
{0, p[[1]] (y - j/2)}], 0], {j, -1 - y, Min[1, y]}]];
a[n_] := b[n, 0][[2]];
a /@ Range[0, 30] (* Jean-François Alcover, Apr 05 2021, after Alois P. Heinz *)
Showing 1-5 of 5 results.
Comments