cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333510 Number of self-avoiding walks in the n X 2 grid graph which start at any of the n vertices on left side of the graph and terminate at any of the n vertices on the right side.

Original entry on oeis.org

1, 8, 29, 80, 195, 444, 969, 2056, 4279, 8788, 17885, 36176, 72875, 146412, 293649, 588312, 1177855, 2357188, 4716133, 9434336, 18871091, 37744988, 75493209, 150990120, 301984455, 603973684, 1207952749, 2415911536, 4831829819, 9663667148, 19327342625, 38654694456, 77309399055, 154618809252
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2020

Keywords

Examples

			a(1) = 1;
   +--+
a(2) = 8;
   +--+   +  +   +--*   +  *
          |  |      |   |
   *  *   *--*   *  +   *--+
   -------------------------
   *--+   *  +   *--*   *  *
   |         |   |  |
   +  *   +--*   +  +   +--+
a(3) = 29;
   +--+   +  +   +  +   +--*   +  *
          |  |   |  |      |   |
   *  *   *--*   *  *   *  +   *--+
                 |  |
   *  *   *  *   *--*   *  *   *  *
   --------------------------------
   +  *   +--*   +--*   +  *   +  *
   |         |      |   |      |
   *  +   *--*   *  *   *--*   *  *
   |  |   |         |      |   |
   *--*   *--+   *  +   *  +   *--+
   --------------------------------
   *--+   *  +   *  +   *--*   *  *
   |         |      |   |  |
   +  *   +--*   +  *   +  +   +--+
                 |  |
   *  *   *  *   *--+   *  *   *  *
   --------------------------------
   *  *   *--*   *  *   *  *   *--+
          |  |                 |
   +  +   +  *   +--*   +  *   *--*
   |  |      |      |   |         |
   *--*   *  +   *  +   *--+   +--*
   --------------------------------
   *--+   *  +   *  +   *--*   *  *
   |         |      |   |  |
   *  *   *--*   *  *   *  +   *--+
   |      |         |   |      |
   +  *   +  *   +--*   +  *   +  *
   --------------------------------
   *  *   *--*   *  *   *  *
          |  |
   *  +   *  *   *--*   *  *
      |   |  |   |  |
   +--*   +  +   +  +   +--+
		

Crossrefs

Column k=2 of A333509.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A(start, goal, n, k):
        universe = tl.grid(n - 1, k - 1)
        GraphSet.set_universe(universe)
        paths = GraphSet.paths(start, goal)
        return paths.len()
    def A333509(n, k):
        if n == 1: return 1
        s = 0
        for i in range(1, n + 1):
            for j in range(k * n - n + 1, k * n + 1):
                s += A(i, j, k, n)
        return s
    def A333510(n):
        return A333509(n, 2)
    print([A333510(n) for n in range(1, 20)])

Formula

Conjecture: a(n) = (27*2^n - n^3 - 26*n - 24)/3.
Conjecture: G.f.: x*(1+2*x-5*x^2+2*x^3+2*x^4)/((1-x)^4*(1-2*x)).