cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333513 Square array T(n,k), n >= 2, k >= 2, read by antidiagonals, where T(n,k) is the number of self-avoiding closed paths on an n X k grid which pass through four corners ((0,0), (0,k-1), (n-1,k-1), (n-1,0)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 7, 11, 7, 1, 1, 17, 49, 49, 17, 1, 1, 41, 229, 373, 229, 41, 1, 1, 99, 1081, 3105, 3105, 1081, 99, 1, 1, 239, 5123, 26515, 44930, 26515, 5123, 239, 1, 1, 577, 24323, 227441, 674292, 674292, 227441, 24323, 577, 1
Offset: 2

Views

Author

Seiichi Manyama, Mar 25 2020

Keywords

Examples

			Square array T(n,k) begins:
  1,  1,    1,     1,      1,        1, ...
  1,  1,    3,     7,     17,       41, ...
  1,  3,   11,    49,    229,     1081, ...
  1,  7,   49,   373,   3105,    26515, ...
  1, 17,  229,  3105,  44930,   674292, ...
  1, 41, 1081, 26515, 674292, 17720400, ...
		

Crossrefs

Column k=2-7 give: A000012, A001333(n-2), A333514, A333515, A358712, A358713.
Main diagonal gives A333466.
Cf. A333758.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333513(n, k):
        universe = tl.grid(n - 1, k - 1)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles()
        for i in [1, k, k * (n - 1) + 1, k * n]:
            cycles = cycles.including(i)
        return cycles.len()
    print([A333513(j + 2, i - j + 2) for i in range(11 - 1) for j in range(i + 1)])

Formula

T(n,k) = T(k,n).