A333515 Number of self-avoiding closed paths on an n X 5 grid which pass through four corners ((0,0), (0,4), (n-1,4), (n-1,0)).
1, 7, 49, 373, 3105, 26515, 227441, 1953099, 16782957, 144262743, 1240194297, 10662034451, 91663230249, 788046822891, 6775004473757, 58246174168047, 500755017859261, 4305100014182879, 37011883913816129, 318199242452585915, 2735628331213604009, 23518793814422304163
Offset: 2
Keywords
Examples
a(2) = 1; +--*--*--*--+ | | +--*--*--*--+ a(3) = 7; +--*--*--*--+ +--*--*--*--+ +--*--*--*--+ | | | | | | * *--* * * *--*--* * * *--* * | | | | | | | | | | | | +--*--* *--+ +--* *--+ +--* *--*--+ +--*--*--*--+ +--*--* *--+ +--* *--*--+ | | | | | | | | | | * * * *--* * * *--* * | | | | | | +--*--*--*--+ +--*--*--*--+ +--*--*--*--+ +--* *--+ | | | | * *--*--* * | | +--*--*--*--+
Links
- Seiichi Manyama, Table of n, a(n) for n = 2..1000
Crossrefs
Column k=5 of A333513.
Programs
-
Python
# Using graphillion from graphillion import GraphSet import graphillion.tutorial as tl def A333513(n, k): universe = tl.grid(n - 1, k - 1) GraphSet.set_universe(universe) cycles = GraphSet.cycles() for i in [1, k, k * (n - 1) + 1, k * n]: cycles = cycles.including(i) return cycles.len() def A333515(n): return A333513(n, 5) print([A333515(n) for n in range(2, 25)])
Formula
Conjectures from Chai Wah Wu, Jan 17 2024: (Start)
a(n) = 13*a(n-1) - 45*a(n-2) + 66*a(n-3) - 17*a(n-4) - 209*a(n-5) + 151*a(n-6) + 140*a(n-7) - 112*a(n-8) - 48*a(n-9) + 50*a(n-10) + 28*a(n-11) for n > 12.
G.f.: x^2*(4*x^7 + 2*x^6 - 29*x^5 - 16*x^4 + 15*x^3 - 3*x^2 + 6*x - 1)/(28*x^11 + 50*x^10 - 48*x^9 - 112*x^8 + 140*x^7 + 151*x^6 - 209*x^5 - 17*x^4 + 66*x^3 - 45*x^2 + 13*x - 1). (End)
Comments