A333557 a(n) = Sum_{d|n, gcd(d, n/d) = 1} uphi(d) * uphi(n/d), where uphi = unitary totient function (A047994).
1, 2, 4, 6, 8, 8, 12, 14, 16, 16, 20, 24, 24, 24, 32, 30, 32, 32, 36, 48, 48, 40, 44, 56, 48, 48, 52, 72, 56, 64, 60, 62, 80, 64, 96, 96, 72, 72, 96, 112, 80, 96, 84, 120, 128, 88, 92, 120, 96, 96, 128, 144, 104, 104, 160, 168, 144, 112, 116, 192, 120, 120, 192, 126, 192, 160, 132, 192, 176, 192
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
uphi[1] = 1; uphi[n_] := Times @@ (#[[1]]^#[[2]] - 1 & /@ FactorInteger[n]); a[n_] := Sum[If[GCD[d, n/d] == 1, uphi[d] uphi[n/d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}] Table[Sum[If[GCD[d, n/d] == 1, (-2)^PrimeNu[n/d] 2^PrimeNu[d] d, 0], {d, Divisors[n]}], {n, 1, 70}] f[p_, e_] := 2*(p^e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 30 2023 *)
-
PARI
a(n) = sumdiv(n, d, if (gcd(d, n/d) == 1, (-2)^omega(n/d)*2^omega(d)*d)); \\ Michel Marcus, Mar 27 2020
Formula
If n = Product (p_j^k_j) then a(n) = Product (2 * (p_j^k_j - 1)).
a(n) = 2^omega(n) * uphi(n).
a(n) = Sum_{d|n, gcd(d, n/d) = 1} (-2)^omega(n/d) * 2^omega(d) * d.
a(n) = Sum_{d|n, gcd(d, n/d) = 1} (-1)^omega(n/d) * A145388(d).