A333560 Square array read by antidiagonals: T(n,k) = Sum_{j = 0..n*k} binomial(n+j-1,j)*2^j; n,k >= 0.
1, 1, 1, 1, 3, 1, 1, 17, 7, 1, 1, 111, 129, 15, 1, 1, 769, 2815, 769, 31, 1, 1, 5503, 65537, 47103, 4097, 63, 1, 1, 40193, 1579007, 3080193, 647167, 20481, 127, 1, 1, 297727, 38862849, 208470015, 109051905, 7929855, 98305, 255, 1, 1, 2228225, 970522623, 14413725697, 19012780031, 3271557121, 90177535, 458753, 511, 1
Offset: 0
Examples
Square array begins |k=0 k=1 k=2 k=3 k=4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - n=0 | 1 1 1 1 1 n=1 | 1 3 7 15 31 n=2 | 1 17 129 769 4097 n=3 | 1 111 2815 47103 647167 n=4 | 1 769 65537 3080193 109051905 n=5 | 1 5503 1579007 208470015 19012780031 n=6 | 1 40193 38862849 14413725697 3385776406529 n=7 | 1 297727 970522623 1011196362751 611732191969279 ... Examples of congruences for column k = 1: T(5,1) - T(1,1) = 5503 - 3 = (2^2)*(5^3)*11 == 0 ( mod 5^3 ). T(7,1) - T(1,1) = 297727 - 3 = (2^2)*(7^4)*31 == 0 ( mod 7^3 ). T(2*11,1) - T(2,1) = 5913649000782757889 - 17 = (2^4)*(3^2)*(11^3)*107*288357478039 == 0 ( mod 11^3 ). T(5^2,1) - T(5,1) = 2840491845703386005503 - 5503 = (2^7)*(3^3)*(5^6)*7*19*1123*352183001 == 0 ( mod 5^6 ).
Programs
-
Maple
T := (n, k) -> add(binomial(n+j-1, j)*2^j, j = 0..n*k): T_col := k -> seq(T(n, k), n = 0..7): seq(print(T_col(k)), k = 0..10);
Formula
T(n,k) = Sum_{j = 0..n*k} binomial(n+j-1,j)*2^j.
Conjectural o.g.f. for column k: 2^(k+1)*x*f'(k,(2^k)*x)/(2*f(k,(2^k)*x) - 1) + 1/(1 + x), where f(k,x) = Sum_{n >= 0} 1/((k+1)*n+1)*C((k+1)*n+1,n)* x^n.
Comments