cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333586 Skewes numbers for prime n-tuples p1, p2, ..., pn, with p2 - p1 = 2.

Original entry on oeis.org

1369391, 87613571, 1172531, 21432401, 204540143441, 7572964186421
Offset: 2

Views

Author

Hugo Pfoertner, Mar 30 2020

Keywords

Comments

a(n) is the least prime p1 starting an n-tuple of consecutive primes p1, ..., pn of minimal span pn - p1, with first gap p2 - p1 = 2, such that the difference of the occurrence count of these n-tuples and the prediction by the first Hardy-Littlewood conjecture has its first sign change. When more than one such tuple exists, the n-tuple with the lexicographically earliest sequence of gaps is chosen.
These primes are called Skewes's (or Skewes) numbers for prime k-tuples in analogy to the definition for single primes. See Tóth's article for details.
a(2) is the Skewes number for twin primes, first computed by Wolf (2011).
The minimal span s(n) = pn - p1 of the n-tuples with an initial gap of 2 is s(2) = 2, s(3) = 6, s(4) = 8, s(5) = 12, s(6) = 18, s(7) = 20, s(8) = 26.

Examples

			For n=6 two types of prime 6-tuples with first gap = 2 starting at p exist:
[p, p+2, p+6, p+8, p+12, p+18] and [p, p+2, p+8, p+12, p+14, p+18]. The first one has the lexicographically earlier sequence of gaps and is therefore chosen. The Hardy-Littlewood prediction for the number of such 6-tuples with p <= P is (C_6*15^5/2^13)*Integral_{x=2..P} 1/log(x)^6 dx with C_6 given in A269846. The 15049-th 6-tuple starting with a(6)=204540143441 is the first one for which n/Integral_{x=2..a(6)} 1/log(x)^6 dx = 17.29864469487 exceeds C_6*15^5/2^13 = 17.29861231158.
		

Crossrefs

The sequence of Skewes numbers always choosing the prime n-tuplets with minimal span, irrespective of the first gap, is A210439, and its variant A332493.

Programs

  • PARI
    Li(x, n)=intnum(t=2, n, 1/log(t)^x);
    \\ a(4)
    C4=0.307494878758327093123354486071076853*(27/2); \\ A065419
    \\ Start at 5 to exclude "fake" 4-tuple 3, 5, 7, 11
    p1=5; p2=7; p3=11; n=0; forprime(p=13, 10^9, if(p-p1==8&&p-p2==6, n++; d=n-C4*Li(4, p3); if(d>=0, print(p1, " ", n, ">", C4*Li(4, p)); break)); p1=p2; p2=p3; p3=p);
    \\ a(5)
    C5=(15^4/2^11)*0.409874885088236474478781212337955277896358; \\ A269843
    p1=3; p2=5; p3=7; p4=11; n=0; forprime(p=13, 10^9, if(p-p1==12&&p-p2==10, n++; d=n-C5*Li(5, p4); if(d>=0, print(p1, " ", n, ">", C5*Li(5, p)); break)); p1=p2; p2=p3; p3=p4; p4=p);

Extensions

Changed title and clarified definition by Hugo Pfoertner, May 11 2020