A333586 Skewes numbers for prime n-tuples p1, p2, ..., pn, with p2 - p1 = 2.
1369391, 87613571, 1172531, 21432401, 204540143441, 7572964186421
Offset: 2
Examples
For n=6 two types of prime 6-tuples with first gap = 2 starting at p exist: [p, p+2, p+6, p+8, p+12, p+18] and [p, p+2, p+8, p+12, p+14, p+18]. The first one has the lexicographically earlier sequence of gaps and is therefore chosen. The Hardy-Littlewood prediction for the number of such 6-tuples with p <= P is (C_6*15^5/2^13)*Integral_{x=2..P} 1/log(x)^6 dx with C_6 given in A269846. The 15049-th 6-tuple starting with a(6)=204540143441 is the first one for which n/Integral_{x=2..a(6)} 1/log(x)^6 dx = 17.29864469487 exceeds C_6*15^5/2^13 = 17.29861231158.
Links
- Hugo Pfoertner, Illustration of growth of number of 7-tuples, (2020).
- László Tóth, On The Asymptotic Density Of Prime k-tuples and a Conjecture of Hardy and Littlewood, CMST 25(3), 2019, 143-148.
- Wikipedia, Skewes's number
- Wikipedia, Twin prime, First Hardy-Littlewood conjecture.
- Marek Wolf, The Skewes number for twin primes: counting sign changes of pi_2(x)-C_2 Li_2(x), arXiv:1107.2809 [math.NT], 14 Jul 2011.
Crossrefs
Programs
-
PARI
Li(x, n)=intnum(t=2, n, 1/log(t)^x); \\ a(4) C4=0.307494878758327093123354486071076853*(27/2); \\ A065419 \\ Start at 5 to exclude "fake" 4-tuple 3, 5, 7, 11 p1=5; p2=7; p3=11; n=0; forprime(p=13, 10^9, if(p-p1==8&&p-p2==6, n++; d=n-C4*Li(4, p3); if(d>=0, print(p1, " ", n, ">", C4*Li(4, p)); break)); p1=p2; p2=p3; p3=p); \\ a(5) C5=(15^4/2^11)*0.409874885088236474478781212337955277896358; \\ A269843 p1=3; p2=5; p3=7; p4=11; n=0; forprime(p=13, 10^9, if(p-p1==12&&p-p2==10, n++; d=n-C5*Li(5, p4); if(d>=0, print(p1, " ", n, ">", C5*Li(5, p)); break)); p1=p2; p2=p3; p3=p4; p4=p);
Extensions
Changed title and clarified definition by Hugo Pfoertner, May 11 2020
Comments