A333593 a(n) = Sum_{k = 0..n} (-1)^(n + k)*binomial(n + k - 1, k)^2.
1, 0, 6, 72, 910, 12000, 163086, 2266544, 32043726, 459167040, 6651400756, 97214919648, 1431514320886, 21213380196736, 316072831033350, 4731683468079072, 71128104013487310, 1073134004384407680, 16243463355081280080, 246585461357885877920
Offset: 0
Examples
Examples of congruences: a(11) = 97214919648 = (2^5)*3*(7^2)*(11^3)*15527 == 0 ( mod 11^3 ). a(2*7) - a(2) = 316072831033350 - 6 = (2^13)*3*(7^3)*11*691*4933 == 0 ( mod 7^3 ). a(5^2) - a(5) = 3164395891098711251676512000 - 12000 = (2^5)*(5^6)*29* 124891891*1747384859327 == 0 ( mod 5^6 ).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- Peter Bala, Notes on A333593
- R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
Programs
-
Maple
seq( add( (-1)^(n+k)*binomial(n+k-1,k)^2, k = 0..n ), n = 0..25);
-
Mathematica
Table[Binomial[2*n-1, n]^2 * HypergeometricPFQ[{1, -n, -n}, {1 - 2 n, 1 - 2 n}, -1], {n, 0, 20}] (* Vaclav Kotesovec, Mar 28 2020 *)
-
PARI
a(n) = sum(k=0, n, (-1)^(n+k)*binomial(n+k-1, k)^2); \\ Michel Marcus, Mar 29 2020
Formula
a(n) ~ 2^(4*n) / (5*Pi*n). - Vaclav Kotesovec, Mar 28 2020
Comments