A333598 Numbers m such that m! has a palindromic number of decimal digits.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 22, 30, 37, 44, 57, 63, 69, 70, 81, 86, 91, 106, 111, 116, 126, 131, 140, 145, 154, 163, 168, 177, 186, 199, 221, 225, 238, 242, 255, 259, 288, 292, 368, 372, 384, 388, 407, 411, 419, 423, 438, 450, 532
Offset: 1
Examples
14! = 87178291200 that has 11 digits, 11 is a palindrome, hence 14 is a term.
Crossrefs
Programs
-
Mathematica
Select[Range[0, 532], PalindromeQ @ Length @ IntegerDigits[#!] &] (* Amiram Eldar, Mar 28 2020 *) Select[Range[0,550],PalindromeQ[IntegerLength[#!]]&] (* Harvey P. Dale, Oct 30 2023 *)
-
PARI
isok(m) = my(d=digits(#Str(m!))); d == Vecrev(d); \\ Michel Marcus, Mar 28 2020
Comments