cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333599 a(n) = Fibonacci(n) * Fibonacci(n+1) mod Fibonacci(n+2).

Original entry on oeis.org

0, 1, 2, 1, 7, 1, 20, 1, 54, 1, 143, 1, 376, 1, 986, 1, 2583, 1, 6764, 1, 17710, 1, 46367, 1, 121392, 1, 317810, 1, 832039, 1, 2178308, 1, 5702886, 1, 14930351, 1, 39088168, 1, 102334154, 1, 267914295, 1, 701408732, 1, 1836311902, 1, 4807526975, 1, 12586269024
Offset: 0

Views

Author

Adnan Baysal, Mar 28 2020

Keywords

Examples

			a(0) = 0*1 mod 1 = 0;
a(1) = 1*1 mod 2 = 1;
a(2) = 1*2 mod 3 = 2;
a(3) = 2*3 mod 5 = 1;
a(4) = 3*5 mod 8 = 7.
		

Crossrefs

Equals A035508 interleaved with A000012.

Programs

  • Mathematica
    With[{f = Fibonacci}, Table[Mod[f[n] * f[n+1], f[n+2]], {n, 0, 50}]] (* Amiram Eldar, Mar 28 2020 *)
  • PARI
    a(n) = if (n % 2, 1, fibonacci(n+2) - 1); \\ Michel Marcus, Mar 29 2020
    
  • PARI
    concat(0, Vec(x*(1 + 3*x - x^3) / ((1 + x)*(1 + x - x^2)*(1 - x - x^2)) + O(x^45))) \\ Colin Barker, Mar 29 2020
  • Python
    def a(n):
        f1 = 0
        f2 = 1
        for i in range(n):
            f = f1 + f2
            f1 = f2
            f2 = f
        return (f1 * f2) % (f1 + f2)
    

Formula

a(2n+1) = 1, and a(2n) = F(2n+2) - 1, and lim(a(2n+2)/a(2n)) = phi^2 by d'Ocagne's identity.
a(n) = F(n) * F(n+1) mod (F(n) + F(n+1)) since F(n+2) := F(n+1) + F(n).
From Colin Barker, Mar 28 2020: (Start)
G.f.: x*(1 + 3*x - x^3) / ((1 + x)*(1 + x - x^2)*(1 - x - x^2)).
a(n) = -a(n-1) + 3*a(n-2) + 3*a(n-3) - a(n-4) - a(n-5) for n>4.
(End)