cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A333903 Number of directed Hamiltonian paths in a 2*n X n grid starting at the upper left corner and finishing in the lower left corner.

Original entry on oeis.org

1, 1, 16, 264, 117852, 43399371, 443064195958, 3575671586791915, 831655228913958996424, 147303585340262824414389642, 774577888161337889995061257722609, 3015734636186832309974653370241824509796, 356606519352227259565296610082412177642016167446
Offset: 1

Views

Author

Seiichi Manyama, Apr 09 2020

Keywords

Examples

			a(1) = 1;
   S
   |
   *
   |
   E
a(2) = 1;
   S--*
      |
   *--*
   |
   *--*
      |
   E--*
a(3) = 16;
   S--*--*   S--*--*   S--*--*   S--*--*
         |         |         |         |
   *--*--*   *--*--*   *--*--*   *--*--*
   |         |         |         |
   *--*--*   *--*--*   *  *--*   *  *--*
         |         |   |  |  |   |  |  |
   *--*--*   *--*  *   *--*  *   *  *  *
   |         |  |  |         |   |  |  |
   *--*--*   *  *  *   *--*  *   *--*  *
         |   |  |  |   |  |  |         |
   E--*--*   E  *--*   E  *--*   E--*--*
   S--*--*   S--*--*   S--*--*   S--*--*
         |         |         |         |
   *--*  *   *--*  *   *--*  *   *--*  *
   |  |  |   |  |  |   |  |  |   |  |  |
   *  *--*   *  *--*   *  *  *   *  *  *
   |         |         |  |  |   |  |  |
   *--*--*   *  *--*   *  *--*   *  *  *
         |   |  |  |   |         |  |  |
   *--*  *   *--*  *   *--*--*   *  *  *
   |  |  |         |         |   |  |  |
   E  *--*   E--*--*   E--*--*   E  *--*
   S  *--*   S  *--*   S  *--*   S  *--*
   |  |  |   |  |  |   |  |  |   |  |  |
   *--*  *   *--*  *   *--*  *   *--*  *
         |         |         |         |
   *--*--*   *--*--*   *--*  *   *--*  *
   |         |         |  |  |   |  |  |
   *--*--*   *  *--*   *  *--*   *  *  *
         |   |  |  |   |         |  |  |
   *--*  *   *--*  *   *--*--*   *  *  *
   |  |  |         |         |   |  |  |
   E  *--*   E--*--*   E--*--*   E  *--*
   S  *--*   S  *--*   S  *--*   S  *--*
   |  |  |   |  |  |   |  |  |   |  |  |
   *  *  *   *  *  *   *  *  *   *  *  *
   |  |  |   |  |  |   |  |  |   |  |  |
   *--*  *   *--*  *   *  *  *   *  *  *
         |         |   |  |  |   |  |  |
   *--*--*   *--*  *   *--*  *   *  *  *
   |         |  |  |         |   |  |  |
   *--*--*   *  *  *   *--*  *   *--*  *
         |   |  |  |   |  |  |         |
   E--*--*   E  *--*   E  *--*   E--*--*
		

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333903(n):
        universe = tl.grid(n - 1, 2 * n - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, 2 * n
        paths = GraphSet.paths(start, goal, is_hamilton=True)
        return paths.len()
    print([A333903(n) for n in range(1, 8)])

Formula

a(n) = A271592(2*n,n).

Extensions

a(9), a(11), a(13) from Seiichi Manyama
a(8), a(10), a(12), a(14)-a(18) from Ed Wynn, Jun 28 2023
Showing 1-1 of 1 results.