A333617 Numbers that are divisible by the sum of the digits of all their divisors (A034690).
1, 15, 52, 444, 495, 688, 810, 1782, 1891, 1950, 2028, 2058, 2295, 2970, 3007, 3312, 3510, 4092, 4284, 4681, 4687, 4824, 4992, 5143, 5307, 5356, 5487, 5742, 5775, 5829, 6724, 6750, 6900, 6913, 6972, 7141, 7471, 7560, 7650, 7722, 7783, 7807, 8280, 8325, 8700, 8721
Offset: 1
Examples
15 is a term since its divisors are {1, 3, 5, 15}, and their sum of sums of digits is 1 + 3 + 5 + (1 + 5) = 15 which is a divisor of 15.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
divDigSum[n_] := DivisorSum[n, Plus @@ IntegerDigits[#] &]; Select[Range[10^4], Divisible[#, divDigSum[#]] &]
-
PARI
isok(k) = k % sumdiv(k, d, sumdigits(d)) == 0; \\ Michel Marcus, Mar 30 2020
-
Python
from sympy import divisors def sd(n): return sum(map(int, str(n))) def ok(n): return n%sum(sd(d) for d in divisors(n)) == 0 def aupto(limit): return [m for m in range(1, limit+1) if ok(m)] print(aupto(8721)) # Michael S. Branicky, Jan 15 2021
Comments