A333652 Triangle T(n,k), n >= 2, 0 <= k <= floor(n^2/2)-n, read by rows, where T(n,k) is the number of 2*(k+n)-cycles in the n X n grid graph which pass through NW and SW corners.
1, 1, 3, 1, 6, 17, 17, 6, 1, 10, 45, 167, 404, 570, 460, 186, 1, 15, 100, 506, 2164, 7726, 20483, 39401, 56015, 57632, 37450, 10340, 1072, 1, 21, 196, 1316, 7066, 33983, 147377, 546400, 1656592, 4099732, 8394433, 14227675, 19443270, 20239262, 14767415, 7007270, 1926990, 230440
Offset: 2
Examples
T(3,0) = 1; +--* | | * * | | +--* T(3,1) = 3; +--*--* +--*--* +--* | | | | | | * * * *--* * *--* | | | | | | +--*--* +--* +--*--* Triangle starts: ==================================================================== n\k| 0 1 2 3 4 ... 7 ... 12 ... 17 ... 24 ---|---------------------------------------------------------------- 2 | 1; 3 | 1, 3; 4 | 1, 6, 17, 17, 6; 5 | 1, 10, 45, 167, 404, ... , 186; 6 | 1, 15, 100, 506, 2164, .......... , 1072; 7 | 1, 21, 196, 1316, 7066, .................. , 230440; 8 | 1, 28, 350, 3038, 20317, ............................ , 4638576;
Links
- Seiichi Manyama, Rows n = 2..9, flattened
Programs
-
Python
# Using graphillion from graphillion import GraphSet import graphillion.tutorial as tl def A333652(n): universe = tl.grid(n - 1, n - 1) GraphSet.set_universe(universe) cycles = GraphSet.cycles().including(1).including(n) return [cycles.len(2 * k).len() for k in range(n, n * n // 2 + 1)] print([i for n in range(2, 8) for i in A333652(n)])
Formula
T(n,0) = 1.
T(n,1) = A000217(n-1) for n > 2.