A333668 Triangle T(n,k), n >= 2, 0 <= k <= floor(n^2/2)-2*n+2, read by rows, where T(n,k) is the number of 2*(k+2*n-2)-cycles in the n X n grid graph which pass through four corners ((0,0), (0,n-1), (n-1,n-1), (n-1,0)).
1, 1, 1, 4, 6, 1, 12, 58, 156, 146, 1, 24, 244, 1416, 5435, 12976, 16654, 7108, 1072, 1, 40, 696, 7076, 47965, 236628, 873610, 2348664, 4335724, 4958224, 3407276, 1298704, 205792
Offset: 2
Examples
T(4,1) = 4; +--*--*--+ +--*--*--+ +--*--*--+ +--* *--+ | | | | | | | | | | *--* * * *--* * * * *--* * | | | | | | | | *--* * * *--* * *--* * * * | | | | | | | | | | +--*--*--+ +--*--*--+ +--* *--+ +--*--*--+ Triangle starts: ================================================================= n\k| 0 1 2 3 4 ... 8 ... 12 ... 18 ---|------------------------------------------------------------- 2 | 1; 3 | 1; 4 | 1, 4, 6; 5 | 1, 12, 58, 156, 146; 6 | 1, 24, 244, 1416, 5435, ... , 1072; 7 | 1, 40, 696, 7076, 47965, ........... , 205792; 8 | 1, 60, 1590, 24960, 263770, ..................... , 4638576;
Links
- Seiichi Manyama, Rows n = 2..9, flattened
Programs
-
Python
# Using graphillion from graphillion import GraphSet import graphillion.tutorial as tl def A333668(n): universe = tl.grid(n - 1, n - 1) GraphSet.set_universe(universe) cycles = GraphSet.cycles() for i in [1, n, n * (n - 1) + 1, n * n]: cycles = cycles.including(i) return [cycles.len(2 * k).len() for k in range(2 * n - 2, n * n // 2 + 1)] print([i for n in range(2, 8) for i in A333668(n)])
Formula
T(n,0) = 1.
T(n,1) = A046092(n-3).