A333697 a(n) = Sum_{d|n} (-1)^omega(n/d) * phi(rad(n/d)) * p(d), where p = A000041 (partition numbers).
1, 1, 1, 2, 3, 6, 9, 14, 22, 31, 46, 59, 89, 114, 158, 201, 281, 337, 472, 570, 756, 936, 1233, 1456, 1926, 2323, 2942, 3556, 4537, 5334, 6812, 8088, 10021, 11997, 14805, 17432, 21601, 25507, 30971, 36606, 44543, 52106, 63219, 74097, 88680, 104281, 124708, 145205, 173429, 202124
Offset: 1
Keywords
Programs
-
Mathematica
Table[Sum[(-1)^PrimeNu[n/d] EulerPhi[Last[Select[Divisors[n/d], SquareFreeQ]]] PartitionsP[d], {d, Divisors[n]}], {n, 50}]
-
PARI
rad(n) = factorback(factorint(n)[, 1]); \\ A007947 a(n) = sumdiv(n, d, (-1)^omega(n/d) * eulerphi(rad(n/d)) * numbpart(d)); \\ Michel Marcus, Apr 03 2020