cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333697 a(n) = Sum_{d|n} (-1)^omega(n/d) * phi(rad(n/d)) * p(d), where p = A000041 (partition numbers).

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 9, 14, 22, 31, 46, 59, 89, 114, 158, 201, 281, 337, 472, 570, 756, 936, 1233, 1456, 1926, 2323, 2942, 3556, 4537, 5334, 6812, 8088, 10021, 11997, 14805, 17432, 21601, 25507, 30971, 36606, 44543, 52106, 63219, 74097, 88680, 104281, 124708, 145205, 173429, 202124
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 02 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^PrimeNu[n/d] EulerPhi[Last[Select[Divisors[n/d], SquareFreeQ]]] PartitionsP[d], {d, Divisors[n]}], {n, 50}]
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    a(n) = sumdiv(n, d, (-1)^omega(n/d) * eulerphi(rad(n/d)) * numbpart(d)); \\ Michel Marcus, Apr 03 2020

Formula

a(n) = Sum_{d|n} A023900(n/d) * A000041(d).
a(n) = Sum_{d|n} A047968(n/d) * mu(d) * d.
Sum_{k=1..n} a(gcd(n,k)) = A000041(n).