cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A330858 Triangle read by rows: T(n,k) is the number of permutations in S_n for which all cycles have length <= k.

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 10, 18, 24, 1, 26, 66, 96, 120, 1, 76, 276, 456, 600, 720, 1, 232, 1212, 2472, 3480, 4320, 5040, 1, 764, 5916, 14736, 22800, 29520, 35280, 40320, 1, 2620, 31068, 92304, 164880, 225360, 277200, 322560, 362880, 1, 9496, 171576, 632736
Offset: 1

Views

Author

Peter Kagey, Apr 28 2020

Keywords

Examples

			For n = 3 and k = 2, the T(3,2) = 4 permutations in S_3 where all cycle lengths are less than or equal to 2 are:
(1)(2)(3), (12)(3), (13)(2), and (1)(23).
Table begins:
n\k| 1    2     3     4      5      6      7      8      9
---+------------------------------------------------------
  1| 1
  2| 1    2
  3| 1    4     6
  4| 1   10    18    24
  5| 1   26    66    96    120
  6| 1   76   276   456    600    720
  7| 1  232  1212  2472   3480   4320   5040
  8| 1  764  5916 14736  22800  29520  35280  40320
  9| 1 2620 31068 92304 164880 225360 277200 322560 362880
		

Crossrefs

T(n,floor(n/2)) gives A024168.
Cf. A126074.

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[n <= k, n!, n*T[n-1, k] - FactorialPower[n-1, k]* T[n-k-1, k]];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 28 2020 *)
  • PARI
    T4(n, k)=if(k<1 || k>n, 0, n!/(n-k)!); \\ A068424
    T(n,k) = if (n<=k, n!, n*T(n-1,k) - T4(n-1,k)*T(n-k-1,k));
    tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 09 2020

Formula

T(n,k) = n! if n <= k, otherwise T(n,k) = n*T(n-1,k) - A068424(n-1,k)*T(n-k-1,k).
T(n,k) = Sum_{j=1..k} A126074(n,j). - Alois P. Heinz, Jul 08 2022
Showing 1-1 of 1 results.