A333737 Array read by antidiagonals: T(n,k) is the number of non-isomorphic n X n nonnegative integer symmetric matrices with all row and column sums equal to k up to permutations of rows and columns.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 5, 5, 1, 1, 1, 1, 3, 9, 12, 7, 1, 1, 1, 1, 4, 13, 33, 29, 11, 1, 1, 1, 1, 4, 20, 74, 142, 79, 15, 1, 1, 1, 1, 5, 28, 163, 556, 742, 225, 22, 1, 1, 1, 1, 5, 39, 319, 1919, 5369, 4454, 677, 30, 1, 1
Offset: 0
Examples
Array begins: ============================================== n\k | 0 1 2 3 4 5 6 7 ----+----------------------------------------- 0 | 1 1 1 1 1 1 1 1 ... 1 | 1 1 1 1 1 1 1 1 ... 2 | 1 1 2 2 3 3 4 4 ... 3 | 1 1 3 5 9 13 20 28 ... 4 | 1 1 5 12 33 74 163 319 ... 5 | 1 1 7 29 142 556 1919 5793 ... 6 | 1 1 11 79 742 5369 31781 156191 ... 7 | 1 1 15 225 4454 64000 692599 5882230 ... ... The T(3,3) = 5 matrices are: [0 0 3] [0 1 2] [0 1 2] [1 0 2] [1 1 1] [0 3 0] [1 1 1] [1 2 0] [0 3 0] [1 1 1] [3 0 0] [2 1 0] [2 0 1] [2 0 1] [1 1 1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..377
- Ming Yean Lim, The number of irreducibles in the plethysm s_lambda[s_m], arXiv:2503.21108 [math.CO], 2025. See p. 8.
Comments