cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A333513 Square array T(n,k), n >= 2, k >= 2, read by antidiagonals, where T(n,k) is the number of self-avoiding closed paths on an n X k grid which pass through four corners ((0,0), (0,k-1), (n-1,k-1), (n-1,0)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 7, 11, 7, 1, 1, 17, 49, 49, 17, 1, 1, 41, 229, 373, 229, 41, 1, 1, 99, 1081, 3105, 3105, 1081, 99, 1, 1, 239, 5123, 26515, 44930, 26515, 5123, 239, 1, 1, 577, 24323, 227441, 674292, 674292, 227441, 24323, 577, 1
Offset: 2

Views

Author

Seiichi Manyama, Mar 25 2020

Keywords

Examples

			Square array T(n,k) begins:
  1,  1,    1,     1,      1,        1, ...
  1,  1,    3,     7,     17,       41, ...
  1,  3,   11,    49,    229,     1081, ...
  1,  7,   49,   373,   3105,    26515, ...
  1, 17,  229,  3105,  44930,   674292, ...
  1, 41, 1081, 26515, 674292, 17720400, ...
		

Crossrefs

Column k=2-7 give: A000012, A001333(n-2), A333514, A333515, A358712, A358713.
Main diagonal gives A333466.
Cf. A333758.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333513(n, k):
        universe = tl.grid(n - 1, k - 1)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles()
        for i in [1, k, k * (n - 1) + 1, k * n]:
            cycles = cycles.including(i)
        return cycles.len()
    print([A333513(j + 2, i - j + 2) for i in range(11 - 1) for j in range(i + 1)])

Formula

T(n,k) = T(k,n).

A358698 Number of self-avoiding closed paths in the 7 X n grid graph which pass through all vertices on four (left, right, upper, lower) sides of the graph.

Original entry on oeis.org

1, 21, 408, 6410, 113748, 2002405, 35669433, 633099244, 11240647480, 199480271184, 3540336868535, 62831861216325, 1115122033297714, 19790829247392636, 351241699540793996, 6233729269914805533, 110634310753645173365, 1963503651093439655818, 34847658208568166865562, 618465506517313482341986
Offset: 2

Views

Author

Seiichi Manyama, Nov 27 2022

Keywords

Crossrefs

Row 7 of A333758.

A333759 Number of self-avoiding closed paths in the n X n grid graph which pass through all vertices on four (left, right, upper, lower) sides of the graph.

Original entry on oeis.org

1, 1, 11, 191, 11346, 2002405, 1112939654, 1878223479450
Offset: 2

Views

Author

Seiichi Manyama, Apr 04 2020

Keywords

Comments

a(11) = 152567999801505122456.

Examples

			a(2) = 1;
   +--+
   |  |
   +--+
a(3) = 1;
   +--+--+
   |     |
   +     +
   |     |
   +--+--+
a(4) = 11;
   +--+--+--+   +--+--+--+   +--+--+--+
   |        |   |        |   |        |
   +--*--*  +   +--*  *--+   +--*     +
         |  |      |  |         |     |
   +--*--*  +   +--*  *--+   +--*     +
   |        |   |        |   |        |
   +--+--+--+   +--+--+--+   +--+--+--+
   +--+--+--+   +--+--+--+   +--+--+--+
   |        |   |        |   |        |
   +  *--*--+   +  *--*  +   +     *--+
   |  |         |  |  |  |   |     |
   +  *--*--+   +  *  *  +   +     *--+
   |        |   |  |  |  |   |        |
   +--+--+--+   +--+  +--+   +--+--+--+
   +--+--+--+   +--+--+--+   +--+  +--+
   |        |   |        |   |  |  |  |
   +        +   +        +   +  *--*  +
   |        |   |        |   |        |
   +  *--*  +   +        +   +  *--*  +
   |  |  |  |   |        |   |  |  |  |
   +--+  +--+   +--+--+--+   +--+  +--+
   +--+  +--+   +--+  +--+
   |  |  |  |   |  |  |  |
   +  *--*  +   +  *  *  +
   |        |   |  |  |  |
   +        +   +  *--*  +
   |        |   |        |
   +--+--+--+   +--+--+--+
		

Crossrefs

Main diagonal of A333758.
Cf. A333466.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333759(n):
        universe = tl.grid(n - 1, n - 1)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles()
        points = [i for i in range(1, n * n + 1) if i % n < 2 or ((i - 1) // n + 1) % n < 2]
        for i in points:
            cycles = cycles.including(i)
        return cycles.len()
    print([A333759(n) for n in range(2, 10)])

A333760 Number of self-avoiding closed paths in the 4 X n grid graph which pass through all vertices on four (left, right, upper, lower) sides of the graph.

Original entry on oeis.org

1, 3, 11, 36, 122, 408, 1371, 4599, 15437, 51804, 173860, 583476, 1958173, 6571695, 22054863, 74016936, 248403622, 833651844, 2797766831, 9389410251, 31511212505, 105752809368, 354910389192, 1191092559048, 3997351239929, 13415260479675, 45022116630931
Offset: 2

Views

Author

Seiichi Manyama, Apr 04 2020

Keywords

Examples

			a(2) = 1;
   +--+
   |  |
   +  +
   |  |
   +  +
   |  |
   +--+
a(3) = 3;
   +--+--+   +--+--+   +--+--+
   |     |   |     |   |     |
   +--*  +   +  *--+   +     +
      |  |   |  |      |     |
   +--*  +   +  *--+   +     +
   |     |   |     |   |     |
   +--+--+   +--+--+   +--+--+
		

Crossrefs

Row 4 of A333758.

Programs

  • PARI
    N=40; x='x+O('x^N); Vec(x^2/(1-3*x-2*x^2+3*x^3-x^4))
    
  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333758(n, k):
        universe = tl.grid(n - 1, k - 1)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles()
        points = [i for i in range(1, k * n + 1) if i % k < 2 or ((i - 1) // k + 1) % n < 2]
        for i in points:
            cycles = cycles.including(i)
        return cycles.len()
    def A333760(n):
        return A333758(4, n)
    print([A333760(n) for n in range(2, 15)])

Formula

G.f.: x^2/(1-3*x-2*x^2+3*x^3-x^4).
a(n) = 3*a(n-1) + 2*a(n-2) - 3*(a-3) + a(n-4) for n > 5.

A358696 Number of self-avoiding closed paths in the 5 X n grid graph which pass through all vertices on four (left, right, upper, lower) sides of the graph.

Original entry on oeis.org

1, 5, 36, 191, 1123, 6410, 37165, 214515, 1240200, 7165033, 41403125, 239227616, 1382302375, 7987125379, 46150853892, 266666446637, 1540838849619, 8903196975232, 51444004997119, 297251155267189, 1717561649837610, 9924328164015589, 57344252900906673, 331343672343272500, 1914553310297505893, 11062575457823993391, 63921216037276901284
Offset: 2

Views

Author

Seiichi Manyama, Nov 27 2022

Keywords

Crossrefs

Row 5 of A333758.
Cf. A333515.

Formula

Conjecture: a(n) = 6 *a(n-1) + a(n-2) - 20 * a(n-3) + 37 * a(n-4) + 16 * a(n-5) - 12 * a(n-6) - 7 * a(n-7) + 5 * a(n-8) - a(n-9) for n > 10.

A358697 Number of self-avoiding closed paths in the 6 X n grid graph which pass through all vertices on four (left, right, upper, lower) sides of the graph.

Original entry on oeis.org

1, 11, 122, 1123, 11346, 113748, 1153742, 11674245, 118180383, 1195822385, 12100751361, 122447319062
Offset: 2

Views

Author

Seiichi Manyama, Nov 27 2022

Keywords

Crossrefs

Row 6 of A333758.
Showing 1-6 of 6 results.