A333771 Triangular numbers that are the product of four distinct primes.
210, 1326, 1770, 1830, 2145, 2346, 2415, 2926, 3003, 3486, 4186, 4278, 5565, 6105, 6555, 6670, 7626, 8385, 8646, 9730, 11935, 12246, 13695, 16653, 17205, 17391, 17578, 18915, 22155, 22578, 24531, 25878, 26106, 27730, 27966, 28203, 30381, 32385, 33411, 35245
Offset: 1
Keywords
Examples
The 20th triangular number, T(20) = 20*21/2 = 210 = 2 * 3 * 5 * 7, so 210 is a term. T(1333) = 889111 = 23 * 29 * 31 * 43, so 889111 is a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
q:= n-> map(i-> i[2], ifactors(n)[2])=[1$4]: select(q, [seq(n*(n+1)/2, n=0..300)])[]; # Alois P. Heinz, Apr 04 2020
-
Mathematica
Select[Accumulate[Range[300]],PrimeNu[#]==PrimeOmega[#]==4&] (* Harvey P. Dale, Jul 21 2021 *)
Comments