A333795 Number of self-avoiding closed paths on an n X n grid which pass through all points on the two diagonals of the grid.
1, 0, 6, 68, 6102, 1404416, 1094802826, 2524252113468
Offset: 2
Examples
a(2) = 1; +--+ | | +--+ a(4) = 6; +--*--*--+ +--*--*--+ +--*--*--+ | | | | | | *--+--+ * *--+ +--* * +--+--* | | | | | | *--+--+ * *--+ +--* * +--+--* | | | | | | +--*--*--+ +--*--*--+ +--*--*--+ +--*--*--+ +--* *--+ +--* *--+ | | | | | | | | | | * +--+ * * +--+ * * + + * | | | | | | | | | | * + + * * +--+ * * +--+ * | | | | | | | | | | +--* *--+ +--* *--+ +--*--*--+
Programs
-
Python
# Using graphillion from graphillion import GraphSet import graphillion.tutorial as tl def A333795(n): universe = tl.grid(n - 1, n - 1) GraphSet.set_universe(universe) cycles = GraphSet.cycles() points = [i + 1 for i in range(n * n) if i % n - i // n == 0 or i % n + i // n == n - 1] for i in points: cycles = cycles.including(i) return cycles.len() print([A333795(n) for n in range(2, 10)])
Comments