cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A333796 Number of self-avoiding closed paths on an n X n grid which pass through all points on the diagonal connecting NW and SE corners.

Original entry on oeis.org

1, 2, 22, 716, 73346, 23374544, 23037365786, 69630317879888
Offset: 2

Views

Author

Seiichi Manyama, Apr 05 2020

Keywords

Comments

a(11) = 18267559028025887599256.

Examples

			a(2) = 1;
   +--*
   |  |
   *--+
a(3) = 2;
   +--*--*   +--*
   |     |   |  |
   *--+  *   *  +--*
      |  |   |     |
      *--+   *--*--+
a(4) = 22;
   +--*--*--*   +--*--*--*   +--*--*--*
   |        |   |        |   |        |
   *--+--*  *   *--+--*  *   *--+--*  *
         |  |         |  |         |  |
   *--*--+  *      *--+  *         +  *
   |        |      |     |         |  |
   *--*--*--+      *--*--+         *--+
   +--*--*--*   +--*--*--*   +--*--*--*
   |        |   |        |   |        |
   *--+  *--*   *--+  *--*   *--+     *
      |  |         |  |         |     |
   *--*  +--*      *  +--*      *--+  *
   |        |      |     |         |  |
   *--*--*--+      *--*--+         *--+
   +--*--*--*   +--*--*--*   +--*--*--*
   |        |   |        |   |        |
   *  +--*--*   *  +--*  *   *  +--*  *
   |  |         |  |  |  |   |  |  |  |
   *  *--+--*   *--*  +  *   *  *  +  *
   |        |         |  |   |  |  |  |
   *--*--*--+         *--+   *--*  *--+
   +--*--*      +--*--*      +--*--*
   |     |      |     |      |     |
   *--+  *--*   *--+  *      *--+  *
      |     |      |  |         |  |
      *--+  *   *--*  +--*      *  +--*
         |  |   |        |      |     |
         *--+   *--*--*--+      *--*--+
   +--*--*      +--*  *--*   +--*  *--*
   |     |      |  |  |  |   |  |  |  |
   *  +--*      *  +--*  *   *  +--*  *
   |  |         |        |   |        |
   *  *--+--*   *--*--+  *   *  *--+  *
   |        |         |  |   |  |  |  |
   *--*--*--+         *--+   *--*  *--+
   +--*  *--*   +--*         +--*
   |  |  |  |   |  |         |  |
   *  +  *  *   *  +--*--*   *  +--*--*
   |  |  |  |   |        |   |        |
   *  *--+  *   *--*--+  *   *  *--+  *
   |        |         |  |   |  |  |  |
   *--*--*--+         *--+   *--*  *--+
   +--*         +--*         +--*
   |  |         |  |         |  |
   *  +--*      *  +--*      *  +  *--*
   |     |      |     |      |  |  |  |
   *--*  +--*   *     +--*   *  *--+  *
      |     |   |        |   |        |
      *--*--+   *--*--*--+   *--*--*--+
   +--*
   |  |
   *  +
   |  |
   *  *--+--*
   |        |
   *--*--*--+
		

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333796(n):
        universe = tl.grid(n - 1, n - 1)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles()
        points = [i + 1 for i in range(n * n) if i % n - i // n == 0]
        for i in points:
            cycles = cycles.including(i)
        return cycles.len()
    print([A333796(n) for n in range(2, 10)])
Showing 1-1 of 1 results.