cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A333807 Sum of odd divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 9, 1, 1, 4, 1, 6, 4, 1, 1, 4, 6, 1, 4, 1, 1, 9, 1, 1, 4, 1, 6, 4, 1, 1, 4, 6, 8, 4, 1, 1, 9, 1, 1, 11, 1, 6, 4, 1, 1, 4, 13, 1, 4, 1, 1, 9, 1, 8, 4, 1, 6, 4, 1, 1, 11, 6, 1, 4, 1, 1, 18
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 05 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, # < Sqrt[n] && OddQ[#] &], {n, 1, 90}]
    nmax = 90; CoefficientList[Series[Sum[(2 k - 1) x^(2 k (2 k - 1))/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=1} (2*k - 1) * x^(2*k*(2*k - 1)) / (1 - x^(2*k - 1)).

A333809 G.f.: Sum_{k>=1} (-1)^(k + 1) * x^(k*(k + 1)) / (1 - x^k).

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, -1, 2, 0, 1, 0, 1, 0, 2, -1, 1, 2, 1, -1, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, -1, 3, 0, 1, -1, 1, 1, 2, -1, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 3, -1, 2, 0, 1, -1, 2, 2, 1, -2, 1, 0, 3, -1, 2, 0, 1, -1, 2, 0, 1, 0, 2, 0, 2, -2, 1, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 05 2020

Keywords

Comments

Number of odd divisors of n that are < sqrt(n) minus number of even divisors of n that are < sqrt(n).

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[(-1)^(k + 1) x^(k (k + 1))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

A348953 a(n) = -Sum_{d|n, d < sqrt(n)} (-1)^(d + n/d) * d.

Original entry on oeis.org

0, 1, -1, 1, -1, 3, -1, -1, -1, 3, -1, 2, -1, 3, -4, -1, -1, 6, -1, 3, -4, 3, -1, -2, -1, 3, -4, 3, -1, 11, -1, -5, -4, 3, -6, 6, -1, 3, -4, 0, -1, 12, -1, 3, -9, 3, -1, -8, -1, 8, -4, 3, -1, 12, -6, 2, -4, 3, -1, 5, -1, 3, -11, -5, -6, 12, -1, 3, -4, 15, -1, 0, -1, 3, -9, 3, -8, 12, -1, -8
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[-DivisorSum[n, (-1)^(# + n/#) # &, # < Sqrt[n] &], {n, 1, 80}]
    nmax = 80; CoefficientList[Series[Sum[k x^(k (k + 1))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    A348953(n) = -sumdiv(n,d,if((d*d)Antti Karttunen, Nov 05 2021

Formula

G.f.: Sum_{k>=1} k * x^(k*(k + 1)) / (1 + x^k).
a(n) = A037213(n) - A348608(n). - Ridouane Oudra, Aug 21 2025

A348954 a(n) = Sum_{d|n, d < sqrt(n)} (-1)^(n/d) * d.

Original entry on oeis.org

0, 1, -1, 1, -1, -1, -1, 3, -1, -1, -1, 6, -1, -1, -4, 3, -1, 2, -1, -1, -4, -1, -1, 10, -1, -1, -4, -1, -1, 7, -1, 7, -4, -1, -6, 2, -1, -1, -4, 12, -1, -4, -1, -1, -9, -1, -1, 16, -1, 4, -4, -1, -1, -4, -6, 14, -4, -1, -1, 13, -1, -1, -11, 7, -6, -4, -1, -1, -4, 11, -1, 8, -1, -1, -9, -1, -8, -4, -1, 20
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, (-1)^(n/#) # &, # < Sqrt[n] &], {n, 1, 80}]
    nmax = 80; CoefficientList[Series[Sum[(-1)^(k + 1) k x^(k (k + 1))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    A348954(n) = sumdiv(n,d,if((d*d)Antti Karttunen, Nov 05 2021

Formula

G.f.: Sum_{k>=1} (-1)^(k + 1) * k * x^(k*(k + 1)) / (1 + x^k).

A373032 Expansion of Sum_{k>=1} (-1)^(k+1) * k^2 * x^(k*(k+1)) / (1 - x^k).

Original entry on oeis.org

0, 1, 1, 1, 1, -3, 1, -3, 1, -3, 1, 6, 1, -3, 10, -3, 1, 6, 1, -19, 10, -3, 1, -10, 1, -3, 10, -19, 1, 31, 1, -19, 10, -3, 26, -10, 1, -3, 10, 6, 1, -30, 1, -19, 35, -3, 1, -46, 1, 22, 10, -19, 1, -30, 26, 30, 10, -3, 1, -21, 1, -3, 59, -19, 26, -30, 1, -19, 10, 71
Offset: 1

Views

Author

Ilya Gutkovskiy, May 20 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Sum[(-1)^(k + 1) k^2 x^(k (k + 1))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

a(n) = Sum_{d|n, d < sqrt(n)} (-1)^(d+1) * d^2.
Showing 1-5 of 5 results.