cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333815 G.f.: Sum_{k>=1} x^(k*(3*k - 1)/2) / (1 - x^(3*k)).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 2, 2, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 0, 1, 2, 1, 1, 0, 1, 3, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 2, 2, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 06 2020

Keywords

Comments

Number of ways to write n as the difference of two pentagonal numbers.

Crossrefs

Programs

  • Mathematica
    nmax = 92; CoefficientList[Series[Sum[x^(k (3 k - 1)/2)/(1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    A333815list(up_to_n) = { my(s=Ser(sum(k=1,up_to_n,'x^(k*(3*k - 1)/2) / (1 - 'x^(3*k))), 'x, 1+up_to_n)); vector(up_to_n,i,polcoeff(s,i)); }; \\ - Antti Karttunen, Jan 17 2025
    
  • PARI
    A000326(n) = (n*(3*n-1)/2);
    A333815(n) = { my(u=1+floor((n-1)/3), s=0); forstep(i=u,0,-1,my(p2=A000326(i)); if(p2Antti Karttunen, Jan 17 2025

Formula

G.f.: Sum_{i>=0} Sum_{j>=i} Product_{k=i..j} x^(3*k + 1).

Extensions

Data section extended up to a(105) by Antti Karttunen, Jan 17 2025