cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333842 G.f.: Sum_{k>=1} k * x^(prime(k)^2) / (1 - x^(prime(k)^2)).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 3, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 4, 3, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 3, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 4, 2, 4, 0, 0, 0, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 07 2020

Keywords

Comments

Sum of indices of non-unitary prime factors of n (prime factors for which the exponent exceeds 1).

Examples

			a(450) = a(2 * 3^2 * 5^2) = a(prime(1) * prime(2)^2 * prime(3)^2) = 2 + 3 = 5.
		

Crossrefs

Cf. A000720, A003557, A005117 (positions of 0's), A056170, A056239, A063958, A066328, A071773.

Programs

  • Mathematica
    nmax = 104; CoefficientList[Series[Sum[k x^(Prime[k]^2)/(1 - x^(Prime[k]^2)), {k, 1, nmax}], {x,0, nmax}], x] // Rest
    f[p_, e_] := If[e == 1, 0, PrimePi[p]]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)
  • PARI
    A333842(n) = { my(f=factor(n)); sum(k=1, #f~, if(1==f[k, 2],0,1)*primepi(f[k, 1])); }; \\ Antti Karttunen, Jun 12 2020

Formula

a(n) = A056239(A071773(n)) = A066328(A003557(n)). - Peter Munn and Antti Karttunen, Jun 13 2020
Additive with a(p^e) = primepi(p) = A000720(p) if e >= 2, and 0 otherwise. - Amiram Eldar, Jul 24 2024