A333842 G.f.: Sum_{k>=1} k * x^(prime(k)^2) / (1 - x^(prime(k)^2)).
0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 3, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 4, 3, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 3, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 4, 2, 4, 0, 0, 0, 1
Offset: 1
Keywords
Examples
a(450) = a(2 * 3^2 * 5^2) = a(prime(1) * prime(2)^2 * prime(3)^2) = 2 + 3 = 5.
Links
Crossrefs
Programs
-
Mathematica
nmax = 104; CoefficientList[Series[Sum[k x^(Prime[k]^2)/(1 - x^(Prime[k]^2)), {k, 1, nmax}], {x,0, nmax}], x] // Rest f[p_, e_] := If[e == 1, 0, PrimePi[p]]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)
-
PARI
A333842(n) = { my(f=factor(n)); sum(k=1, #f~, if(1==f[k, 2],0,1)*primepi(f[k, 1])); }; \\ Antti Karttunen, Jun 12 2020
Formula
Additive with a(p^e) = primepi(p) = A000720(p) if e >= 2, and 0 otherwise. - Amiram Eldar, Jul 24 2024
Comments