A333848 a(n) gives the sum of the odd numbers of the smallest nonnegative reduced residue system modulo 2*n + 1, for n >= 0.
0, 1, 4, 9, 13, 25, 36, 32, 64, 81, 66, 121, 124, 121, 196, 225, 170, 216, 324, 240, 400, 441, 272, 529, 513, 416, 676, 560, 522, 841, 900, 570, 792, 1089, 770, 1225, 1296, 752, 1170, 1521, 1093, 1681, 1376, 1232, 1936, 1656, 1410, 1728, 2304, 1490, 2500
Offset: 0
Examples
n = 4: RRSodd(9) = {1, 5, 7} with sum a(4) = 13. Schick's unsigned cycle is SBB(9, 1) = (1, 7, 5). Because A135303(4) = B(9) = 1 there is only this cycle for n = 9.
References
- Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Bokos Druck, Zürich, 2003 (ISBN 3-9522917-0-6). Tables 3.1 to 3.10, for odd p = 3..113 (with gaps), pp. 158-166.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Gerold Brändli and Tim Beyne, Modified Congruence Modulo n with Half the Amount of Residues, arXiv:1504.02757 [math.NT], 2016.
- Wolfdieter Lang, On the Equivalence of Three Complete Cyclic Systems of Integers, arXiv:2008.04300 [math.NT], 2020.
Programs
-
Mathematica
{0}~Join~Table[Total@ Select[Range[1, m, 2], GCD[#, m] == 1 &], {m, Array[2 # + 1 &, 50]}] (* Michael De Vlieger, Oct 15 2020 *)
-
PARI
a(n) = if (n==0, 0, my(m=2*n+1); vecsum(select(x->((gcd(m, x)==1) && (x%2)), [1..m]))); \\ Michel Marcus, May 05 2020
-
PARI
apply( {A333848(n)=vecsum([2*m-1|m<-[1..n],gcd(m*2-1,n*2+1)==1])}, [0..50]) \\ M. F. Hasler, Jun 04 2020
Formula
a(n) = Sum_{j=1..delta(2*n+1)} RRSodd(2*n+1)_j, for n >= 1, with delta(k) = A055034(k). a(0) = 0 (undefined case).
Comments