A333855 Numbers 2*k + 1 with A135303(k) >= 2, for k >= 1, sorted increasingly.
17, 31, 33, 41, 43, 51, 57, 63, 65, 73, 85, 89, 91, 93, 97, 99, 105, 109, 113, 117, 119, 123, 127, 129, 133, 137, 145, 151, 153, 155, 157, 161, 165, 171, 177, 185, 187, 189, 193, 195, 201, 205, 209, 215, 217, 219, 221, 223, 229, 231, 233, 241, 247, 249, 251, 255
Offset: 1
Keywords
References
- Peter Hilton and Jean Pedersen, A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, 2010, pp. 261-264.
- Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Bokos Druck, Zürich, 2003 (ISBN 3-9522917-0-6). Tables 3.1 to 3.10, for odd p = 3..113 (with gaps), pp. 158-166.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Wolfdieter Lang, On the Equivalence of Three Complete Cyclic Systems of Integers, arXiv:2008.04300 [math.NT], 2020
Programs
-
Mathematica
1 + 2 Select[Range[2, 127], 2 <= EulerPhi[#2]/(2 If[#2 > 1 && GCD[#1, #2] == 1, Min[MultiplicativeOrder[#1, #2, {-1, 1}]], 0]) & @@ {2, 2 # + 1} &] (* Michael De Vlieger, Oct 15 2020 *)
-
PARI
isok8(m, n) = my(md = Mod(2, 2*n+1)^m); (md==1) || (md==-1); A003558(n) = my(m=1); while(!isok8(m, n) , m++); m; isok(m) = (m%2) && eulerphi(m)/(2*A003558((m-1)/2)) >= 2; \\ Michel Marcus, Jun 09 2020
Formula
Sequence {a(n)}_{n>=1} of numbers 2*k + 1 satisfying A135303(k) >= 2, for k >= 1, ordered increasingly.
Comments