A333863 Number of Hamiltonian paths in a 2*(2*n+1) X (2*n+1) grid starting at the upper left corner and finishing in the lower right corner.
1, 16, 117204, 440051896440, 825830699757513748579, 769203260676279544212492116449800, 354179806054404909542325896762875458037457353029, 80433401895946253522491939742836167238530417144721958187080077425
Offset: 0
Keywords
Links
- Ed Wynn, Table of n, a(n) for n = 0..9
Programs
-
Python
# Using graphillion from graphillion import GraphSet import graphillion.tutorial as tl def A333863(n): universe = tl.grid(4 * n + 1, 2 * n) GraphSet.set_universe(universe) start, goal = 1, 2 * (2 * n + 1) ** 2 paths = GraphSet.paths(start, goal, is_hamilton=True) return paths.len() print([A333863(n) for n in range(7)])
Formula
a(n) = A333580(2*(2*n+1), 2*n+1).
Extensions
More terms from Ed Wynn, Jun 28 2023