cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A333864 Number of Hamiltonian cycles on an n X 2*n grid.

Original entry on oeis.org

1, 4, 236, 18684, 32463802, 54756073582, 2365714170297014, 87106950271042689032, 88514516642574170326003422, 71598455565101470929617326988084, 1673219200189416324422979402201514800461, 29815394539834813572600735261571894552950941626, 15836807024750749574106724392556189684881848226515147589
Offset: 2

Views

Author

Seiichi Manyama, Apr 08 2020

Keywords

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333864(n):
        universe = tl.grid(n - 1, 2 * n - 1)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles(is_hamilton=True)
        return cycles.len()
    print([A333864(n) for n in range(2, 8)])

Formula

a(n) = A321172(n,2*n).

Extensions

a(10) and a(12) quoted from Olga's paper.
a(14) from Huaide Cheng, Jul 02 2025

A333903 Number of directed Hamiltonian paths in a 2*n X n grid starting at the upper left corner and finishing in the lower left corner.

Original entry on oeis.org

1, 1, 16, 264, 117852, 43399371, 443064195958, 3575671586791915, 831655228913958996424, 147303585340262824414389642, 774577888161337889995061257722609, 3015734636186832309974653370241824509796, 356606519352227259565296610082412177642016167446
Offset: 1

Views

Author

Seiichi Manyama, Apr 09 2020

Keywords

Examples

			a(1) = 1;
   S
   |
   *
   |
   E
a(2) = 1;
   S--*
      |
   *--*
   |
   *--*
      |
   E--*
a(3) = 16;
   S--*--*   S--*--*   S--*--*   S--*--*
         |         |         |         |
   *--*--*   *--*--*   *--*--*   *--*--*
   |         |         |         |
   *--*--*   *--*--*   *  *--*   *  *--*
         |         |   |  |  |   |  |  |
   *--*--*   *--*  *   *--*  *   *  *  *
   |         |  |  |         |   |  |  |
   *--*--*   *  *  *   *--*  *   *--*  *
         |   |  |  |   |  |  |         |
   E--*--*   E  *--*   E  *--*   E--*--*
   S--*--*   S--*--*   S--*--*   S--*--*
         |         |         |         |
   *--*  *   *--*  *   *--*  *   *--*  *
   |  |  |   |  |  |   |  |  |   |  |  |
   *  *--*   *  *--*   *  *  *   *  *  *
   |         |         |  |  |   |  |  |
   *--*--*   *  *--*   *  *--*   *  *  *
         |   |  |  |   |         |  |  |
   *--*  *   *--*  *   *--*--*   *  *  *
   |  |  |         |         |   |  |  |
   E  *--*   E--*--*   E--*--*   E  *--*
   S  *--*   S  *--*   S  *--*   S  *--*
   |  |  |   |  |  |   |  |  |   |  |  |
   *--*  *   *--*  *   *--*  *   *--*  *
         |         |         |         |
   *--*--*   *--*--*   *--*  *   *--*  *
   |         |         |  |  |   |  |  |
   *--*--*   *  *--*   *  *--*   *  *  *
         |   |  |  |   |         |  |  |
   *--*  *   *--*  *   *--*--*   *  *  *
   |  |  |         |         |   |  |  |
   E  *--*   E--*--*   E--*--*   E  *--*
   S  *--*   S  *--*   S  *--*   S  *--*
   |  |  |   |  |  |   |  |  |   |  |  |
   *  *  *   *  *  *   *  *  *   *  *  *
   |  |  |   |  |  |   |  |  |   |  |  |
   *--*  *   *--*  *   *  *  *   *  *  *
         |         |   |  |  |   |  |  |
   *--*--*   *--*  *   *--*  *   *  *  *
   |         |  |  |         |   |  |  |
   *--*--*   *  *  *   *--*  *   *--*  *
         |   |  |  |   |  |  |         |
   E--*--*   E  *--*   E  *--*   E--*--*
		

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333903(n):
        universe = tl.grid(n - 1, 2 * n - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, 2 * n
        paths = GraphSet.paths(start, goal, is_hamilton=True)
        return paths.len()
    print([A333903(n) for n in range(1, 8)])

Formula

a(n) = A271592(2*n,n).

Extensions

a(9), a(11), a(13) from Seiichi Manyama
a(8), a(10), a(12), a(14)-a(18) from Ed Wynn, Jun 28 2023
Showing 1-2 of 2 results.