A333876 a(n) is the largest prime 2^(n-1) <= p < 2^n minimizing the Hamming weight of all primes in this interval.
2, 5, 13, 17, 41, 97, 193, 257, 769, 1153, 2113, 4129, 12289, 18433, 40961, 65537, 163841, 270337, 786433, 1179649, 2101249, 4194433, 8650753, 16777729, 50332673, 69206017, 167772161, 270532609, 537133057, 1107296257, 3221225473, 6442713089, 8858370049
Offset: 2
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 2..1000
Programs
-
PARI
for(n=2, 10, my(hmin=n+n,pmax); forprime(p=2^(n-1), 2^n, my(h=hammingweight(p)); if(h<=hmin,pmax=p;hmin=h)); print1(pmax,", "))
-
Python
from sympy import isprime from sympy.utilities.iterables import multiset_permutations def A333876(n): for i in range(n): q = 2**n-1 for d in multiset_permutations('0'*i+'1'*(n-1-i)): p = q-int(''.join(d),2) if isprime(p): return p # Chai Wah Wu, Apr 08 2020