cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333881 Expansion of e.g.f. exp(Sum_{k>=0} x^(3*k + 1) / (3*k + 1)!).

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 16, 37, 114, 478, 1907, 6777, 28414, 148579, 758916, 3580189, 18981485, 117883917, 720627553, 4193077474, 26795418840, 191751387094, 1352954503595, 9301704998742, 69285817230370, 559142785301527, 4453089770243547, 35182348161102172
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 08 2020

Keywords

Comments

Number of partitions of n-set into blocks congruent to 1 mod 3.

Crossrefs

Programs

  • Mathematica
    nmax = 27; CoefficientList[Series[Exp[Sum[x^(3 k + 1)/(3 k + 1)!, {k, 0, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Boole[MemberQ[{1}, Mod[k, 3]]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 27}]
    nmax = 30; CoefficientList[Series[Exp[Exp[x]/3 - 2*Sin[Pi/6 - Sqrt[3]*x/2] / (3*Exp[x/2])], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2020 *)

Formula

E.g.f.: exp(exp(x)/3 - 2*sin(Pi/6 - sqrt(3)*x/2) / (3*exp(x/2))). - Vaclav Kotesovec, Apr 15 2020
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} binomial(n-1,3*k) * a(n-3*k-1). - Seiichi Manyama, Sep 22 2023