A333901 Array read by antidiagonals: T(n,k) is the number of n X k nonnegative integer matrices with all column sums n and row sums k.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 7, 7, 1, 1, 1, 1, 19, 55, 19, 1, 1, 1, 1, 51, 415, 415, 51, 1, 1, 1, 1, 141, 3391, 10147, 3391, 141, 1, 1, 1, 1, 393, 28681, 261331, 261331, 28681, 393, 1, 1, 1, 1, 1107, 248137, 7100821, 22069251, 7100821, 248137, 1107, 1, 1
Offset: 0
Examples
Array begins: ======================================================= n\k | 0 1 2 3 4 5 6 ----+-------------------------------------------------- 0 | 1 1 1 1 1 1 1 ... 1 | 1 1 1 1 1 1 1 ... 2 | 1 1 3 7 19 51 141 ... 3 | 1 1 7 55 415 3391 28681 ... 4 | 1 1 19 415 10147 261331 7100821 ... 5 | 1 1 51 3391 261331 22069251 1985311701 ... 6 | 1 1 141 28681 7100821 1985311701 602351808741 ... ... The T(3,2) = 7 matrices are: [1 1] [1 1] [1 1] [2 0] [2 0] [0 2] [0 2] [1 1] [2 0] [0 2] [1 1] [0 2] [1 1] [2 0] [1 1] [0 2] [2 0] [0 2] [1 1] [2 0] [1 1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..405 (antidiagonals n=0..27)
Crossrefs
Programs
-
PARI
T(n, k)={ local(M=Map(Mat([k, 1]))); my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v))); my(recurse(h, p, q, v, e) = if(!p, if(!e, acc(q, v)), my(i=poldegree(p), t=pollead(p)); self()(n, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(j=1, min(t, e\m), self()(if(j==t, n, i+m-1), p-j*x^i, q+j*x^(i+m), binomial(t, j)*v, e-j*m))))); for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n, src[i, 1], 0, src[i, 2], k))); vecsum(Mat(M)[, 2]) } for(n=0, 7, for(k=0, 7, print1(T(n,k), ", ")); print)
Formula
T(n,k) = T(k,n).
Comments