A333925 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j=2..k+1} 1/(1 - x^j).
1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 1, 2, 1, 2, 0, 0, 1, 0, 1, 1, 2, 2, 3, 1, 1, 0, 1, 0, 1, 1, 2, 2, 3, 2, 2, 0, 0, 1, 0, 1, 1, 2, 2, 4, 3, 4, 2, 1, 0, 1, 0, 1, 1, 2, 2, 4, 3, 5, 3, 2, 0, 0, 1, 0, 1, 1, 2, 2, 4, 4, 6, 5, 5, 2, 1, 0
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 0, 0, 0, 0, 0, 0, ... 0, 1, 1, 1, 1, 1, ... 0, 0, 1, 1, 1, 1, ... 0, 1, 1, 2, 2, 2, ... 0, 0, 1, 1, 2, 2, ...
Links
- David A. Corneth, Table of n, a(n) for n = 0..10010 (first 141 rows antidiagonals flattened)
- Index entries for Molien series
Crossrefs
Programs
-
Mathematica
Table[Function[k, SeriesCoefficient[Product[1/(1 - x^j), {j, 2, k + 1}], {x, 0, n}]][i - n], {i, 0, 13}, {n, 0, i}] // Flatten
Formula
G.f. of column k: Product_{j=2..k+1} 1/(1 - x^j).
Comments