cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333925 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j=2..k+1} 1/(1 - x^j).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 1, 2, 1, 2, 0, 0, 1, 0, 1, 1, 2, 2, 3, 1, 1, 0, 1, 0, 1, 1, 2, 2, 3, 2, 2, 0, 0, 1, 0, 1, 1, 2, 2, 4, 3, 4, 2, 1, 0, 1, 0, 1, 1, 2, 2, 4, 3, 5, 3, 2, 0, 0, 1, 0, 1, 1, 2, 2, 4, 4, 6, 5, 5, 2, 1, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2020

Keywords

Comments

A(n,k) is the number of partitions of n into parts 2, 3, ..., k and k + 1.

Examples

			Square array begins:
  1,  1,  1,  1,  1,  1,  ...
  0,  0,  0,  0,  0,  0,  ...
  0,  1,  1,  1,  1,  1,  ...
  0,  0,  1,  1,  1,  1,  ...
  0,  1,  1,  2,  2,  2,  ...
  0,  0,  1,  1,  2,  2,  ...
		

Crossrefs

Main diagonal gives A002865.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[1/(1 - x^j), {j, 2, k + 1}], {x, 0, n}]][i - n], {i, 0, 13}, {n, 0, i}] // Flatten

Formula

G.f. of column k: Product_{j=2..k+1} 1/(1 - x^j).