A333988 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of (1-(k+1)*x) / (1-2*(k+1)*x+((k-1)*x)^2).
1, 1, 1, 1, 2, 1, 1, 3, 8, 1, 1, 4, 17, 32, 1, 1, 5, 28, 99, 128, 1, 1, 6, 41, 208, 577, 512, 1, 1, 7, 56, 365, 1552, 3363, 2048, 1, 1, 8, 73, 576, 3281, 11584, 19601, 8192, 1, 1, 9, 92, 847, 6016, 29525, 86464, 114243, 32768, 1, 1, 10, 113, 1184, 10033, 62976, 265721, 645376, 665857, 131072, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, 6, ... 1, 8, 17, 28, 41, 56, ... 1, 32, 99, 208, 365, 576, ... 1, 128, 577, 1552, 3281, 6016, ... 1, 512, 3363, 11584, 29525, 62976, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Programs
-
Mathematica
T[n_, 0] := 1; T[n_, k_] := Sum[k^j * Binomial[2*n, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Sep 04 2020 *)
-
PARI
{T(n, k) = sum(j=0, n, k^j*binomial(2*n, 2*j))}
Formula
T(n,k) = Sum_{j=0..n} k^j * binomial(2*n,2*j).
T(0,k) = 1, T(1,k) = k+1 and T(n,k) = 2 * (k+1) * T(n-1,k) - (k-1)^2 * T(n-2,k) for n>1.