A334002 Number of spanning trees in the graph P_7 x P_n.
1, 2911, 4768673, 7022359583, 10021992194369, 14143261515284447, 19872369301840986112, 27873182693625548898079, 39067130344394503972142977, 54740416599810921320592441119, 76692291658239649098972455530913, 107441842254735898225957962027174559, 150517199699838971875005120330439121217
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..200
- Vaclav Kotesovec, Generating function
- Index entries for linear recurrences with constant coefficients, order 48.
Crossrefs
Row m=7 of A116469.
Programs
-
Mathematica
a[n_] := Resultant[ChebyshevU[n - 1, x/2], ChebyshevU[6, (4 - x)/2], x]; Array[a, 13] (* Amiram Eldar, May 04 2021 *)
-
Python
# Using graphillion from graphillion import GraphSet import graphillion.tutorial as tl def A116469(n, k): if n == 1 or k == 1: return 1 universe = tl.grid(n - 1, k - 1) GraphSet.set_universe(universe) spanning_trees = GraphSet.trees(is_spanning=True) return spanning_trees.len() def A334002(n): return A116469(n, 7) print([A334002(n) for n in range(1, 15)])