cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A334012 a(n) is the least integer that can be expressed as the sum of one or more consecutive nonzero octagonal numbers in exactly n ways.

Original entry on oeis.org

1, 1045, 5985
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 12 2020

Keywords

Examples

			From _Seiichi Manyama_, May 16 2021: (Start)
Let S(k, m) denote the sum of m octagonal numbers starting from k*(3*k-2). We have
a(1) = S(1, 1);
a(2) = S(19, 1) = S(1, 10);
a(3) = S(45, 1) = S(11, 9) = S(1, 18). (End)
		

Crossrefs

A334008 a(n) is the least integer that can be expressed as the sum of one or more consecutive nonzero pentagonal numbers in exactly n ways.

Original entry on oeis.org

1, 287, 472320, 89051435880
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 12 2020

Keywords

Examples

			Let S(k, m) denote the sum of m pentagonal numbers starting from the k-th. We have
a(1) = S(1, 1);
a(2) = S(14, 1) = S(2, 7);
a(3) = S(103, 24) = S(19, 80) = S(67, 41);
a(4) = S(10833, 484) = S(4542, 1936) = S(9153, 660) = S(2817, 3036);
		

Crossrefs

Extensions

a(4) from Giovanni Resta, Apr 13 2020

A334010 a(n) is the least integer that can be expressed as the sum of one or more consecutive nonzero hexagonal numbers in exactly n ways.

Original entry on oeis.org

1, 703, 274550, 11132303325
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 12 2020

Keywords

Examples

			Let S(k, m) denote the sum of m hexagonal numbers starting from the k-th. We have
a(1) = S(1, 1);
a(2) = S(19, 1) = S(13, 2);
a(3) = S(62, 25) = S(184, 4) = S(25, 51);
a(4) = S(3065, 505) = S(22490, 11) = S(1215, 1430) = S(1938, 946).
		

Crossrefs

Extensions

a(4) from Giovanni Resta, Apr 13 2020

A334011 a(n) is the least integer that can be expressed as the sum of one or more consecutive nonzero heptagonal numbers in exactly n ways.

Original entry on oeis.org

1, 872, 8240232, 263346158075
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 12 2020

Keywords

Examples

			Let S(k, m) denote the sum of m heptagonal numbers starting from the k-th. We have
a(1) = S(1, 1);
a(2) = S(13, 2) = S(3, 8);
a(3) = S(133, 98) = S(479, 14) = S(168, 77);
a(4) = S(6773, 1785) = S(810, 6006) = S(7467, 1547) = S(38758, 70).
		

Crossrefs

Extensions

a(4) from Giovanni Resta, Apr 14 2020

A343777 a(n) is the least integer that can be expressed as the sum of one or more consecutive nonzero n-gonal numbers in exactly n ways.

Original entry on oeis.org

2180, 554503705
Offset: 3

Views

Author

Ilya Gutkovskiy, Apr 30 2021

Keywords

Crossrefs

A368076 a(n) is the least integer that can be expressed as the difference of two positive tetrahedral numbers in exactly n ways.

Original entry on oeis.org

3, 36, 2180, 10053736
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 10 2023

Keywords

Comments

Index of first occurrence of n in A368072.

Examples

			a(2) = 36: 36 = 56 - 20 = 120 - 84.
		

Crossrefs

A329236 a(n) is the least integer that can be expressed as the sum of one or more consecutive centered triangular numbers in exactly n ways.

Original entry on oeis.org

1, 64, 1789760
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 13 2020

Keywords

Comments

If it exists, a(4) > 10^18. - Bert Dobbelaere, Apr 17 2020

Crossrefs

Showing 1-7 of 7 results.