A334040 Number of odd numbers larger than n in the Collatz trajectory of n.
0, 0, 1, 0, 0, 0, 3, 0, 3, 0, 2, 0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 38, 0, 0, 2, 36, 0, 0, 0, 1, 0, 0, 0, 4, 0, 35, 0, 2, 0, 0, 1, 34, 0, 0, 0, 1, 0, 0, 33, 35, 0, 1, 0, 3, 0, 0, 32, 33, 0, 0, 0, 1, 0, 0, 0, 31, 0, 33, 0, 2, 0, 0, 2, 4, 0, 0, 31, 32
Offset: 1
Keywords
Examples
For n=7 the Collatz process is: 7,22,(11),34,(17),52,26,(13),40,20,10,5,16,8,4,2,1. The numbers in the parentheses are odd numbers in the Collatz process for n=7 that are bigger than 7. There are three of them, hence a(7)=3.
Links
- Markus Sigg, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale).
- Index entries for sequences related to 3x+1 (or Collatz) problem
Programs
-
Mathematica
Table[Count[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&],?(#>n&&OddQ[#]&)],{n,90}] (* _Harvey P. Dale, Aug 03 2023 *)
-
PARI
f(n) = if (n%2, 3*n+1, n/2); a(n) = {my(nb = 0, m=n); while ((n=f(n)) != 1, if ((n % 2) && (n>m), nb++)); nb;} \\ Michel Marcus, Jun 01 2020