A334226 a(n) is the number of times that the number 3*k+1 from the Collatz trajectory of n is greater than n.
0, 0, 2, 0, 1, 2, 5, 0, 6, 1, 4, 1, 2, 5, 5, 0, 2, 5, 5, 0, 1, 3, 3, 0, 6, 1, 40, 3, 4, 4, 38, 0, 7, 2, 2, 2, 3, 4, 9, 0, 39, 1, 5, 1, 2, 3, 37, 0, 3, 4, 4, 0, 1, 40, 40, 0, 5, 1, 5, 3, 4, 38, 38, 0, 3, 3, 3, 0, 1, 2, 35, 0, 40, 1, 3, 1, 2, 6, 6, 0, 4, 38, 38, 0, 1, 4, 4, 0, 3, 1, 31, 2, 3, 36, 36, 0, 41, 2, 2, 0
Offset: 1
Keywords
Examples
The Collatz trajectory of n=3 is 3, (10), 5, (16), 8, 4, 2, 1. It happens twice that the number 3*k+1 in this process is greater than n (those numbers 3*k+1 are in parentheses), so a(3)=2.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A006667.
Programs
-
Mathematica
a[n_] := Block[{c = NestWhileList[ If[ EvenQ@ #, #/2, 3 # + 1] &, n, #>1 & ]}, Length@ Select[ Range[2, Length[c]], OddQ[c[[# - 1]]] && c[[#]] > n &]]; Array[a, 90] (* Giovanni Resta, May 19 2020 *)
-
PARI
a(n) = my(res=0, cn=n); while(n>1, if(bitand(n,1), n=3*n+1; if(n>cn, res++);, n>>=1)); res \\ David A. Corneth, May 20 2020
Formula
a(n) <= A006667(n). - David A. Corneth, May 20 2020
Extensions
More terms from Giovanni Resta, May 19 2020
Comments