A334058 Triangle read by rows: T(n,k) is the number of configurations with exactly k polyomino matchings in a generalized game of memory played on the path of length 5n.
1, 0, 1, 121, 4, 1, 124760, 1347, 18, 1, 486854621, 2001548, 8154, 52, 1, 5184423824705, 10231953233, 17045774, 35542, 121, 1, 123243726413573515, 134835947255262, 112619668659, 102416812, 124881, 246, 1, 5717986519188343198259, 3821094862609800013, 1820735766620673, 863827126967, 486979381, 375627, 455, 1
Offset: 0
Examples
The first few rows of T(n,k) are: 1; 0, 1; 121, 4, 1; 124760, 1347, 18, 1; 486854621, 2001548, 8154, 52, 1; ... For n=2 and k=1 the polyomino must start either on the second, third, fourth, or fifth vertex of the path, otherwise the remaining quintuple will also form a polyomino; thus T(2,1) = 4.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- Donovan Young, Linear k-Chord Diagrams, arXiv:2004.06921 [math.CO], 2020.
Programs
-
Mathematica
CoefficientList[Normal[Series[Sum[y^j*(5*j)!/120^j/j!/(1+y*(1-z))^(5*j+1),{j,0,20}],{y,0,20}]],{y,z}]
-
PARI
T(n,k)={sum(j=0, n-k, (-1)^(n-j-k)*(n+4*j)!/(120^j*j!*(n-j-k)!*k!))} \\ Andrew Howroyd, Apr 16 2020
Formula
G.f.: Sum_{j>=0} (5*j)! * y^j / (j! * 120^j * (1+(1-z)*y)^(5*j+1)).
T(n,k) = Sum_{j=0..n-k} (-1)^(n-j-k)*(n+4*j)!/(120^j*j!*(n-j-k)!*k!). - Andrew Howroyd, Apr 16 2020
Comments