A334085 GCD of n and the product of all primes < n.
1, 1, 1, 2, 1, 6, 1, 2, 3, 10, 1, 6, 1, 14, 15, 2, 1, 6, 1, 10, 21, 22, 1, 6, 5, 26, 3, 14, 1, 30, 1, 2, 33, 34, 35, 6, 1, 38, 39, 10, 1, 42, 1, 22, 15, 46, 1, 6, 7, 10, 51, 26, 1, 6, 55, 14, 57, 58, 1, 30, 1, 62, 21, 2, 65, 66, 1, 34, 69, 70, 1, 6, 1, 74, 15
Offset: 1
Examples
For n=8 the product of all primes < 8 = A034386(7) = 210; gcd(8,210) = 2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from Christoph Schreier)
Programs
-
Maple
a:= n-> `if`(isprime(n), 1, mul(i[1], i=ifactors(n)[2])): seq(a(n), n=1..80); # Alois P. Heinz, Apr 17 2020
-
Mathematica
a[n_] := GCD[n, Times @@ Select[Range[n - 1], PrimeQ]]; Array[a, 60] (* Amiram Eldar, Apr 14 2020 *)
-
PARI
a(n) = gcd(n, prod(k=1, n-1, if (isprime(k), k, 1))); \\ Michel Marcus, Apr 14 2020
-
PARI
a(n,f=factor(n))=if(f[,2]==[1]~,1,factorback(f[,1])) \\ Charles R Greathouse IV, Apr 14 2020
-
Python
def is_prime(n): if n == 2 or n == 3: return True if n % 2 == 0 or n < 2: return False for i in range(3,int(n**0.5)+1,2): if n % i == 0: return False return True def A(n): if n < 3: raise ValueError('n must be > 2') else: a = 1 for i in range(n): if is_prime(i): a *= i return math.gcd(n,a)
Comments