cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A331410 a(n) is the number of iterations needed to reach a power of 2 starting at n and using the map k -> k + k/p, where p is the largest prime factor of k.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 1, 0, 2, 2, 2, 1, 2, 1, 3, 0, 3, 2, 3, 2, 2, 2, 2, 1, 4, 2, 3, 1, 4, 3, 1, 0, 3, 3, 3, 2, 4, 3, 3, 2, 3, 2, 3, 2, 4, 2, 2, 1, 2, 4, 4, 2, 4, 3, 4, 1, 4, 4, 4, 3, 2, 1, 3, 0, 4, 3, 4, 3, 3, 3, 3, 2, 5, 4, 5, 3, 3, 3, 3, 2, 4, 3, 3, 2, 5, 3, 5, 2, 5, 4, 3, 2, 2, 2, 5, 1, 3, 2, 4, 4, 5, 4, 3, 2, 4
Offset: 1

Views

Author

Ali Sada, Jan 16 2020

Keywords

Comments

Let f(n) = A000265(n) be the odd part of n. Let p be the largest prime factor of k, and say k = p * m. Suppose that k is not a power of 2, i.e., p > 2, then f(k) = p * f(m). The iteration is k -> k + k/p = p*m + m = (p+1) * m. So, p * f(m) -> f(p+1) * f(m). Since for p > 2, f(p+1) < p, the odd part in each iteration decreases, until it becomes 1, i.e., until we reach a power of 2. - Amiram Eldar, Feb 19 2020
Any odd prime factor of k can be used at any step of the iteration, and the result will be same. Thus, like A329697, this is also fully additive sequence. - Antti Karttunen, Apr 29 2020
If and only if a(n) is equal to A005087(n), then sigma(2n) - sigma(n) is a power of 2. (See A336923, A046528). - Antti Karttunen, Mar 16 2021

Examples

			The trajectory of 15 is [15,18,24,32], taking 3 iterations to reach 32. So, a(15) = 3.
		

Crossrefs

Cf. A000265, A005087, A006530 (greatest prime factor), A052126, A078701, A087436, A329662 (positions of records and the first occurrences of each n), A334097, A334098, A334108, A334861, A336467, A336921, A336922, A336923 (A046528).
Cf. array A335430, and its rows A335431, A335882, and also A335874.
Cf. also A329697 (analogous sequence when using the map k -> k - k/p), A335878.
Cf. also A330437, A335884, A335885, A336362, A336363 for other similar iterations.

Programs

  • Magma
    f:=func; g:=func; a:=[]; for n in [1..1000] do k:=n; s:=0; while not g(k) do  s:=s+1; k:=f(k); end while; Append(~a,s); end for; a; // Marius A. Burtea, Jan 19 2020
    
  • Mathematica
    a[n_] := -1 + Length @ NestWhileList[# + #/FactorInteger[#][[-1, 1]] &, n, # / 2^IntegerExponent[#, 2] != 1 &]; Array[a, 100] (* Amiram Eldar, Jan 16 2020 *)
  • PARI
    A331410(n) = if(!bitand(n,n-1),0,1+A331410(n+(n/vecmax(factor(n)[, 1])))); \\ Antti Karttunen, Apr 29 2020
    
  • PARI
    A331410(n) = { my(k=0); while(bitand(n,n-1), k++; my(f=factor(n)[, 1]); n += (n/f[2-(n%2)])); (k); }; \\ Antti Karttunen, Apr 29 2020
    
  • PARI
    A331410(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A331410(1+f[k,1])))); }; \\ Antti Karttunen, Apr 30 2020

Formula

From Antti Karttunen, Apr 29 2020: (Start)
This is a completely additive sequence: a(2) = 0, a(p) = 1+a(p+1) for odd primes p, a(m*n) = a(m)+a(n), if m,n > 1.
a(2n) = a(A000265(n)) = a(n).
If A209229(n) == 1, a(n) = 0, otherwise a(n) = 1 + a(n+A052126(n)), or equally, 1 + a(n+(n/A078701(n))).
a(n) = A334097(n) - A334098(n).
a(A122111(n)) = A334108(n).
(End)
a(n) = A334861(n) - A329697(n). - Antti Karttunen, May 14 2020
a(n) = a(A336467(n)) + A087436(n) = A336921(n) + A087436(n). - Antti Karttunen, Mar 16 2021

Extensions

Data section extended up to a(105) by Antti Karttunen, Apr 29 2020

A334107 a(n) = A329697(A122111(n)).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 2, 0, 2, 0, 1, 2, 1, 0, 2, 3, 1, 2, 1, 0, 2, 0, 2, 2, 1, 3, 3, 0, 1, 2, 2, 0, 2, 0, 1, 2, 1, 0, 2, 4, 3, 2, 1, 0, 3, 3, 2, 2, 1, 0, 3, 0, 1, 2, 2, 3, 2, 0, 1, 2, 3, 0, 3, 0, 1, 3, 1, 4, 2, 0, 2, 4, 1, 0, 3, 3, 1, 2, 2, 0, 3, 4, 1, 2, 1, 3, 2, 0, 4, 2, 4, 0, 2, 0, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Apr 29 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Map[Length@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, #, # != 2^IntegerExponent[#, 2] &] - 1 &, Array[Times @@ Table[Prime[LengthWhile[#1, # >= j &] /. 0 -> 1], {j, #2}] & @@ {#, Max[#]} &@ PrimePi@ Flatten[ConstantArray[#1, {#2}] & @@@ FactorInteger@ #] &, 105] ] (* Michael De Vlieger, May 14 2020, after Robert G. Wilson v at A329697 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1]))));
    A334107(n) = A329697(A122111(n));

Formula

a(n) = A329697(A122111(n)) = A329697(A322865(n)).
a(n) = A329697(A105560(n)) + a(A064989(n)).
For n >= 1, a(A001248(n)) = n, and these seem to be also the first occurrences of each n.

A334109 a(n) = A329697(A225546(n)).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 4, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 8, 4, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 4, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 8, 2, 5, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Apr 29 2020

Keywords

Comments

Conjecture: Each k >= 0 occurs for the first time at A334110(k) = A019565(k)^2. Note that each k must occur first time on square n, because of the identity a(n) = a(A008833(n)). However, is there any reason to exclude squares with prime exponents > 2 from the candidates? See also comments in A334204.

Crossrefs

Programs

  • Mathematica
    Map[-1 + Length@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, #, # != 2^IntegerExponent[#, 2] &] &, Array[If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 105] ] (* Michael De Vlieger, May 26 2020 *)
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1]))));
    A334109(n) = { my(f=factor(n),pis=apply(primepi,f[,1]),es=f[,2]); sum(k=1,#f~,(2^(pis[k]-1))*A329697(A019565(es[k]))); };

Formula

Additive with a(prime(i)^j) = A000079(i-1) * A329697(A019565(j)), a(m*n) = a(m)+a(n) if gcd(m,n) = 1.
Alternatively, additive with a(prime(i)^(2^k)) = 2^(i-1) * A329697(prime(k+1)), a(m*n) = a(m)+a(n) if A059895(m,n) = 1. - Peter Munn, May 04 2020
a(n) = A329697(A225546(n)) = A329697(A331736(n)).
a(n) = a(A008833(n)).
For all n >= 0, a(A334110(n)) = n, a(A334860(n)) = A334204(n).
a(A331590(m,k)) = a(m) + a(k); a(A003961(n)) = 2*a(n). - Peter Munn, Apr 30 2020

A339877 a(n) = A336467(A122111(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 9, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 9, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 9, 7, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 9, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 7, 1, 3, 9, 1, 1, 3, 1, 1, 9
Offset: 1

Views

Author

Antti Karttunen, Dec 25 2020

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m));
    A336467(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]+1))^f[k,2])); };
    A339877(n) = A336467(A122111(n));
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A105560(n) = if(1==n,n,prime(bigomega(n)));
    A339877(n) = if(1==n||isprime(n),1,A000265(A105560(n)+1) * A339877(A064989(n)));

Formula

For noncomposite n, a(n) = 1, for composite n, a(n) = A000265(A105560(n)+1) * a(A064989(n)).
a(n) = A336467(A122111(n)).

A339874 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = A052126(n) for n > 1, and f(1) = 0.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 5, 3, 2, 4, 2, 3, 5, 6, 2, 7, 2, 4, 5, 3, 2, 6, 8, 3, 9, 4, 2, 7, 2, 10, 5, 3, 8, 11, 2, 3, 5, 6, 2, 7, 2, 4, 9, 3, 2, 10, 12, 13, 5, 4, 2, 14, 8, 6, 5, 3, 2, 11, 2, 3, 9, 15, 8, 7, 2, 4, 5, 13, 2, 16, 2, 3, 17, 4, 12, 7, 2, 10, 18, 3, 2, 11, 8, 3, 5, 6, 2, 14, 12, 4, 5, 3, 8, 15, 2, 19, 9, 20, 2, 7, 2, 6, 17
Offset: 1

Views

Author

Antti Karttunen, Dec 25 2020

Keywords

Comments

For all i, j:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A001222(i) = A001222(j),
a(i) = a(j) => A322826(i) = A322826(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A052126(n) = if(1==n,n,(n/vecmax(factor(n)[, 1])));
    Aux339874(n) = if(1==n,0,A052126(n));
    v339874 = rgs_transform(vector(up_to, n, Aux339874(n)));
    A339874(n) = v339874[n];

Formula

a(1) = 1; for n > 1, a(n) = 1 + A322826(n).
Showing 1-5 of 5 results.