A334122 a(n) is the sum of all primes <= n, mod n.
0, 0, 2, 1, 0, 4, 3, 1, 8, 7, 6, 4, 2, 13, 11, 9, 7, 4, 1, 17, 14, 11, 8, 4, 0, 22, 19, 16, 13, 9, 5, 0, 28, 24, 20, 16, 12, 7, 2, 37, 33, 28, 23, 17, 11, 5, 46, 40, 34, 28, 22, 16, 10, 3, 51, 45, 39, 33, 27, 20, 13, 5, 60, 53, 46, 39, 32, 24, 16, 8, 0, 63, 55
Offset: 1
Examples
a(7) = (2+3+5+7) mod 7 = 17 mod 7 = 3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
b:= proc(n) b(n):= `if`(n<2, 0, b(n-1)+`if`(isprime(n), n, 0)) end: a:= n-> irem(b(n), n): seq(a(n), n=1..80); # Alois P. Heinz, Apr 15 2020
-
Mathematica
Mod[Accumulate[(# * Boole @ PrimeQ[#]) & /@ (r = Range[100])], r] (* Amiram Eldar, Apr 15 2020 *)
-
PARI
a(n) = my(np=primepi(n)); vecsum(primes(np)) % n; \\ Michel Marcus, Apr 16 2020
-
Python
from sympy import primerange a = lambda n: sum(primerange(n + 1)) % n # David Radcliffe, May 10 2025
Formula
a(n) = A034387(n) mod n.