cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A064415 a(1) = 0, a(n) = iter(n) if n is even, a(n) = iter(n)-1 if n is odd, where iter(n) = A003434(n) = smallest number of iterations of Euler totient function phi needed to reach 1.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 5, 5, 4, 4, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 4, 5, 5, 5, 5, 5, 4, 6, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 4, 6, 6, 5, 6, 5, 5, 6, 6, 5, 5, 6, 5, 6, 5, 6, 6, 5, 5, 6, 6, 6, 6, 6, 5
Offset: 1

Views

Author

Christian WEINSBERG (cweinsbe(AT)fr.packardbell.org), Sep 30 2001

Keywords

Comments

a(n) is the exponent of the eventual power of 2 reached when starting from k=n and then iterating the nondeterministic map k -> k-(k/p), where p can be any odd prime factor of k, for example, the largest. Note that each original odd prime factor p of n brings its own share of 2's to the final result after it has been completely processed (with all intermediate odd primes also eliminated, leaving only 2's). As no 2's are removed, also all 2's already present in the original n are included in the eventual power of 2 that is reached, implying that a(n) >= A007814(n). - Antti Karttunen, May 13 2020

Crossrefs

The 2-adic valuation of A309243.
Partial sums of A334195. Cf. A053044 for partial sums of this sequence.
Cf. also A334097 (analogous sequence when using the map k -> k + k/p).

Programs

Formula

For all integers m >0 and n>0 a(m*n)=a(m)+a(n). The function a(n) is completely additive. The smallest integer q which satisfy the equation a(q)=n is 2^q, the greatest is 3^q. For all integers n>0, the counter image off n, a^-1(n) is finite.
a(1) = 0 and a(n) = A054725(n) for n>=2. - Joerg Arndt, Apr 08 2014, A-number corrected by Antti Karttunen, May 13 2020
From Antti Karttunen, May 13 2020: (Start)
For n > 1, a(n) = A003434(n) - A000035(n).
a(1) = 0, a(2) = 1 and for n > 2, a(n) = sum(p | n, a(p-1)), where sum is over all primes p that divide n, with multiplicity. (Cf. A054725).
a(1) = 0, a(2) = 1 and a(p) = 1 + a((p-1)/2) if p is an odd prime and a(n*m) = a(n) + a(m) if m,n > 1. [From above formula, 1+ compensates for the "lost" 2]
a(n) = A007814(A309243(n)). [From Rémy Sigrist's conjecture in the latter sequence. This reduces to a(n) = sum(p|n, a(p-1)) formula above, thus holds also]
If A209229(n) = 1 [when n is a power of 2], a(n) = A007814(n), otherwise a(n) = a(n-A052126(n)) = a(A171462(n)). [From the definition in the comments]
a(n) = A064097(n) - A329697(n).
a(2^k) = a(3^k) = k.
(End)

Extensions

More terms from David Wasserman, Jul 22 2002
Definition corrected by Reinhard Zumkeller, Sep 18 2011

A334090 a(1) = 0, and then after the first differences of A064097.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 0, -1, 1, 0, 1, -1, 1, 0, 1, -2, 1, 0, 0, 0, 1, -1, 1, -2, 2, -1, 1, -1, 1, 0, 0, -1, 1, 0, 1, -1, 0, 1, 1, -3, 2, -1, 0, 0, 1, -1, 1, -1, 1, 0, 1, -2, 1, 0, 0, -2, 2, 0, 1, -2, 2, -1, 1, -2, 1, 0, 0, 0, 1, -1, 1, -2, 1, 0, 1, -1, 0, 1, 0, -1, 1, -1, 1, 0, 0, 1, -1, -2, 1, 1, 0, -1, 1, -1, 1, -1, 1
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2020

Keywords

Crossrefs

Cf. A334197 (positions of records).
Cf. also A332903.

Programs

Formula

a(1) = 0, and for n > 1, a(n) = A064097(n) - A064097(n-1).
a(n) = A334091(n) + A334195(n).

A334091 a(1) = 0, then after the first differences of A329697.

Original entry on oeis.org

0, 0, 1, -1, 1, 0, 1, -2, 2, -1, 1, -1, 1, 0, 0, -2, 1, 1, 1, -2, 2, -1, 1, -2, 1, 0, 1, -1, 1, -1, 1, -3, 3, -2, 2, -1, 1, 0, 0, -2, 1, 1, 1, -2, 1, 0, 1, -3, 3, -2, 0, 0, 1, 0, 0, -1, 2, -1, 1, -2, 1, 0, 1, -4, 3, 0, 1, -3, 3, -1, 1, -2, 1, 0, 0, 0, 1, -1, 1, -3, 3, -2, 1, 0, -1, 2, 0, -2, 1, 0, 1, -1, 1, 0, 0, -3, 1, 2, 0, -2, 1, -1, 1, -1, 2
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2020

Keywords

Crossrefs

Programs

Formula

a(1) = 0, and for n > 1, a(n) = A329697(n) - A329697(n-1).
a(n) = A334090(n) - A334195(n).

A334196 a(1) = 0, then after the first differences of A003434.

Original entry on oeis.org

0, 1, 1, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1, -1, 1, 0, 1, -2, 1, 0, 0, 0, 1, -1, 1, -1, 0, 0, 1, -1, 1, 0, 0, 0, 0, -1, 1, -1, 1, 0, 1, -2, 1, 0, 0, 0, 1, -1, 0, 0, 1, -1, 1, -2, 2, -1, 0, 0, 1, -1, 1, -1, 0, 1, 0, -1, 1, 0, 0, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 0, -1, 1, 1, -2, 2, -2, 1, 0, 1, -2, 1, 0, 0, 0, 0, 0, 1, -2, 1, 0, 1, -1, 1, -1, 0
Offset: 1

Views

Author

Antti Karttunen, Apr 18 2020

Keywords

Comments

Also, from a(2) onward the first differences of A049108, and from a(3) onward the first differences of A032358.

Crossrefs

Programs

  • Mathematica
    Differences[Array[Length[FixedPointList[EulerPhi, #]] &, 100, 0]] (* Paolo Xausa, Aug 18 2024 *)
  • PARI
    A003434(n) = for(k=0, n, n>1 || return(k); n=eulerphi(n));
    A334196(n) = if(1==n,0,A003434(n)-A003434(n-1));

Formula

a(1) = 0; and for n > 1, a(n) = A003434(n) - A003434(n-1).
Showing 1-4 of 4 results.