A334208 Number of partitions of 2n into two composite parts, (r,s), such that r and s have the same number of primes less than or equal to them.
0, 0, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2
Offset: 1
Examples
a(9) = 2; 2*9 = 18 has two partitions into composite parts, (10,8) and (9,9), such that pi(10) = 4 = pi(8) and pi(9) = 4 = pi(9).
Links
Programs
-
Mathematica
Table[Sum[KroneckerDelta[PrimePi[i], PrimePi[2 n - i]] (1 - PrimePi[i] + PrimePi[i - 1]) (1 - PrimePi[2 n - i] + PrimePi[2 n - i - 1]), {i, 2, n}], {n, 100}]
-
PARI
A334208(n) = sum(i=2,n,(!isprime(i) && !isprime(n+n-i) && primepi(i)==primepi(n+n-i))); \\ Antti Karttunen, Jan 29 2025
Formula
Extensions
Data section extended to a(105) by Antti Karttunen, Jan 29 2025
Comments