cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334208 Number of partitions of 2n into two composite parts, (r,s), such that r and s have the same number of primes less than or equal to them.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 18 2020

Keywords

Comments

Apparently a(n) = A051699(n) for n>=2. - R. J. Mathar, Apr 22 2020

Examples

			a(9) = 2; 2*9 = 18 has two partitions into composite parts, (10,8) and (9,9), such that pi(10) = 4 = pi(8) and pi(9) = 4 = pi(9).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[KroneckerDelta[PrimePi[i], PrimePi[2 n - i]] (1 - PrimePi[i] + PrimePi[i - 1]) (1 - PrimePi[2 n - i] + PrimePi[2 n - i - 1]), {i, 2, n}], {n, 100}]
  • PARI
    A334208(n) = sum(i=2,n,(!isprime(i) && !isprime(n+n-i) && primepi(i)==primepi(n+n-i))); \\ Antti Karttunen, Jan 29 2025

Formula

a(n) = Sum_{i=2..n} [pi(i) = pi(2*n-i)] * (1 - c(i)) * (1 - c(2*n-i)), where [] is the Iverson bracket, pi is the prime counting function (A000720), and c is the prime characteristic (A010051).

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 29 2025