cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334230 Triangle read by rows: T(n,k) gives the meet of n and k in the graded lattice of the positive integers defined by covering relations "n covers (n - n/p)" for all divisors p of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 2, 4, 1, 2, 2, 4, 5, 1, 2, 3, 4, 4, 6, 1, 2, 3, 4, 4, 6, 7, 1, 2, 2, 4, 4, 4, 4, 8, 1, 2, 3, 4, 4, 6, 6, 4, 9, 1, 2, 2, 4, 5, 4, 4, 8, 4, 10, 1, 2, 2, 4, 5, 4, 4, 8, 4, 10, 11, 1, 2, 3, 4, 4, 6, 6, 8, 6, 8, 8, 12, 1, 2, 3, 4, 4, 6, 6, 8
Offset: 1

Views

Author

Keywords

Comments

Any row with prime index p is a copy of row p-1 followed by that prime p.

Examples

			The interval [1,15] illustrates that, for example, T(12, 10) = 8, T(12, 4) = T(5, 6) = 4, T(8, 3) = 2, etc.
      15
     _/ \_
    /     \
  10       12
  | \_   _/ |
  |   \ /   |
  5    8    6
   \_  |  _/|
     \_|_/  |
       4    3
       |  _/
       |_/
       2
       |
       |
       1
Triangle begins:
  n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14
  ---+---------------------------------
   1 | 1
   2 | 1 2
   3 | 1 2 3
   4 | 1 2 2 4
   5 | 1 2 2 4 5
   6 | 1 2 3 4 4 6
   7 | 1 2 3 4 4 6 7
   8 | 1 2 2 4 4 4 4 8
   9 | 1 2 3 4 4 6 6 4 9
  10 | 1 2 2 4 5 4 4 8 4 10
  11 | 1 2 2 4 5 4 4 8 4 10 11
  12 | 1 2 3 4 4 6 6 8 6  8  8 12
  13 | 1 2 3 4 4 6 6 8 6  8  8 12 13
  14 | 1 2 3 4 4 6 7 8 6  8  8 12 12 14
		

Crossrefs

Programs

  • PARI
    \\ This just returns the largest (in a normal sense) number x from the intersection of the set of descendants of n and k:
    up_to = 105;
    buildWdescsets(up_to) = { my(v=vector(up_to)); v[1] = Set([1]); for(n=2,up_to, my(f=factor(n)[, 1]~, s=Set([n])); for(i=1,#f,s = setunion(s,v[n-(n/f[i])])); v[n] = s); (v); }
    vdescsets = buildWdescsets(up_to);
    A334230tr(n,k) = vecmax(setintersect(vdescsets[n],vdescsets[k]));
    A334230list(up_to) = { my(v = vector(up_to), i=0); for(n=1,oo, for(k=1,n, i++; if(i > up_to, return(v)); v[i] = A334230tr(n,k))); (v); };
    v334230 = A334230list(up_to);
    A334230(n) = v334230[n]; \\ Antti Karttunen, Apr 19 2020

Formula

T(n, k) = m*T(n/m, k/m) for m = gcd(n, k).