cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334231 Triangle read by rows: T(n,k) gives the join of n and k in the graded lattice of the positive integers defined by covering relations "n covers (n - n/p)" for all divisors p of n.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 4, 6, 4, 5, 5, 15, 5, 5, 6, 6, 6, 6, 15, 6, 7, 7, 7, 7, 35, 7, 7, 8, 8, 12, 8, 10, 12, 14, 8, 9, 9, 9, 9, 45, 9, 21, 18, 9, 10, 10, 15, 10, 10, 15, 35, 10, 45, 10, 11, 11, 33, 11, 11, 33, 77, 11, 99, 11, 11, 12, 12, 12, 12, 15, 12, 14, 12
Offset: 1

Views

Author

Peter Kagey, Apr 19 2020

Keywords

Comments

The poset of the positive integers is defined by covering relations "n covers (n - n/p)" for all divisors p of n.
n appears A332809(n) times in row n.

Examples

			The interval [1,15] illustrates that, for example, T(12, 10) = T(6, 5) = 15, T(12, 4) = 12, T(8, 5) = 10, T(3, 1) = 3, etc.
      15
     _/ \_
    /     \
  10       12
  | \_   _/ |
  |   \ /   |
  5    8    6
   \_  |  _/|
     \_|_/  |
       4    3
       |  _/
       |_/
       2
       |
       |
       1
Triangle begins:
  n\k|  1  2  3  4  5  6  7  8  9 10  11 12 13 14
  ---+-------------------------------------------
   1 |  1
   2 |  2  2
   3 |  3  3  3
   4 |  4  4  6  4
   5 |  5  5 15  5  5
   6 |  6  6  6  6 15  6
   7 |  7  7  7  7 35  7  7
   8 |  8  8 12  8 10 12 14  8
   9 |  9  9  9  9 45  9 21 18  9
  10 | 10 10 15 10 10 15 35 10 45 10
  11 | 11 11 33 11 11 33 77 11 99 11  11
  12 | 12 12 12 12 15 12 14 12 18 15  33 12
  13 | 13 13 13 13 65 13 91 13 39 65 143 13 13
  14 | 14 14 14 14 35 14 14 14 21 35  77 14 91 14
		

Crossrefs

Programs

  • PARI
    \\ This just returns the least (in a normal sense) number x such that both n and k are in its set of descendants:
    up_to = 105;
    buildWdescsets(up_to) = { my(v=vector(up_to)); v[1] = Set([1]); for(n=2,up_to, my(f=factor(n)[, 1]~, s=Set([n])); for(i=1,#f,s = setunion(s,v[n-(n/f[i])])); v[n] = s); (v); }
    vdescsets = buildWdescsets(100*up_to); \\ XXX - Think about a safe limit here!
    A334231tr(n,k) = for(i=max(n,k),oo,if(setsearch(vdescsets[i],n)&&setsearch(vdescsets[i],k),return(i)));
    A334231list(up_to) = { my(v = vector(up_to), i=0); for(n=1,oo, for(k=1,n, i++; if(i > up_to, return(v)); v[i] = A334231tr(n,k))); (v); };
    v334231 = A334231list(up_to);
    A334231(n) = v334231[n]; \\ Antti Karttunen, Apr 19 2020

Formula

T(n,1) = T(n,n) = n. T(n, 2) = n for n >= 2.
T(x,y) <= lcm(x,y) for any x,y because x is in same chain with lcm(x,y), and y is in same chain with lcm(x,y).
Moreover, empirically it looks like T(x,y) divides lcm(x,y).