A334231 Triangle read by rows: T(n,k) gives the join of n and k in the graded lattice of the positive integers defined by covering relations "n covers (n - n/p)" for all divisors p of n.
1, 2, 2, 3, 3, 3, 4, 4, 6, 4, 5, 5, 15, 5, 5, 6, 6, 6, 6, 15, 6, 7, 7, 7, 7, 35, 7, 7, 8, 8, 12, 8, 10, 12, 14, 8, 9, 9, 9, 9, 45, 9, 21, 18, 9, 10, 10, 15, 10, 10, 15, 35, 10, 45, 10, 11, 11, 33, 11, 11, 33, 77, 11, 99, 11, 11, 12, 12, 12, 12, 15, 12, 14, 12
Offset: 1
Examples
The interval [1,15] illustrates that, for example, T(12, 10) = T(6, 5) = 15, T(12, 4) = 12, T(8, 5) = 10, T(3, 1) = 3, etc. 15 _/ \_ / \ 10 12 | \_ _/ | | \ / | 5 8 6 \_ | _/| \_|_/ | 4 3 | _/ |_/ 2 | | 1 Triangle begins: n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ---+------------------------------------------- 1 | 1 2 | 2 2 3 | 3 3 3 4 | 4 4 6 4 5 | 5 5 15 5 5 6 | 6 6 6 6 15 6 7 | 7 7 7 7 35 7 7 8 | 8 8 12 8 10 12 14 8 9 | 9 9 9 9 45 9 21 18 9 10 | 10 10 15 10 10 15 35 10 45 10 11 | 11 11 33 11 11 33 77 11 99 11 11 12 | 12 12 12 12 15 12 14 12 18 15 33 12 13 | 13 13 13 13 65 13 91 13 39 65 143 13 13 14 | 14 14 14 14 35 14 14 14 21 35 77 14 91 14
Links
- Peter Kagey, Table of n, a(n) for n = 1..10011 (first 141 rows, flattened)
- Mathematics Stack Exchange, Does a graded poset on the positive integers generated from subtracting factors define a lattice?
- Wikipedia, Semilattice
Programs
-
PARI
\\ This just returns the least (in a normal sense) number x such that both n and k are in its set of descendants: up_to = 105; buildWdescsets(up_to) = { my(v=vector(up_to)); v[1] = Set([1]); for(n=2,up_to, my(f=factor(n)[, 1]~, s=Set([n])); for(i=1,#f,s = setunion(s,v[n-(n/f[i])])); v[n] = s); (v); } vdescsets = buildWdescsets(100*up_to); \\ XXX - Think about a safe limit here! A334231tr(n,k) = for(i=max(n,k),oo,if(setsearch(vdescsets[i],n)&&setsearch(vdescsets[i],k),return(i))); A334231list(up_to) = { my(v = vector(up_to), i=0); for(n=1,oo, for(k=1,n, i++; if(i > up_to, return(v)); v[i] = A334231tr(n,k))); (v); }; v334231 = A334231list(up_to); A334231(n) = v334231[n]; \\ Antti Karttunen, Apr 19 2020
Formula
T(n,1) = T(n,n) = n. T(n, 2) = n for n >= 2.
T(x,y) <= lcm(x,y) for any x,y because x is in same chain with lcm(x,y), and y is in same chain with lcm(x,y).
Moreover, empirically it looks like T(x,y) divides lcm(x,y).
Comments